AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature \qquad

A-level

MATHEMATICS

Unit Further Pure 4

Wednesday 24 May 2017
Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 The matrices \mathbf{A} and \mathbf{B} are given by

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & p & -4
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{cc}
0 & p \\
2 & -2 \\
1 & -3
\end{array}\right]
$$

where p is a constant.
(a) Find $\mathbf{B A}$ in terms of p.
(b) Show that BA is a singular matrix for all values of p.

QUESTION REFERTNCE	Answer space for question 1

QUESTION REFRRENCE	Answer space for question 1

2 Three planes have equations

$$
\begin{aligned}
5 x+2 y+11 z & =45 \\
2 x-y+5 z & =15 \\
-3 x+3 y+a z & =b
\end{aligned}
$$

where a and b are constants. The planes do not meet at a unique point.
(a) Find the value of a.
(b) There are two possible geometrical configurations for the planes. Identify each configuration and find the corresponding values of b.

	Answer space for question 2

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 2

3 The points A, B and C have position vectors

$$
\mathbf{a}=\left[\begin{array}{c}
2 \\
-p \\
-1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
0 \\
2 p+1 \\
-1
\end{array}\right] \text { and } \mathbf{c}=\left[\begin{array}{c}
p-1 \\
4 \\
3
\end{array}\right]
$$

respectively, relative to the origin O where p is a constant.
(a) Find $(\mathbf{a} \times \mathbf{b}) . \mathbf{c}$ in terms of p.
(b) These three position vectors define the edges of a parallelepiped, with volume 13 cubic units. Find all the possible values of p.

	Answer space for question 3
-	

4 The transformation T maps (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ such that $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}x \\ y\end{array}\right]$.
Given that $\mathbf{M}=\left[\begin{array}{cc}3 & -2 \\ 4 & a\end{array}\right]$ where a is a constant and $\operatorname{det} \mathbf{M}^{-1}=-\frac{1}{10}$:
(a) find the value of a;
(b) find the equations of all the invariant lines of T .

	Answer space for question 4

| |
| :--- | :--- |

	Answer space for question 4

$5 \quad$ A 3 by 3 matrix \mathbf{N} has characteristic equation $2 \lambda^{3}+\lambda^{2}+k \lambda+6=0$, where k is a constant. One of the eigenvalues of \mathbf{N} is -3 .
(a) (i) Find the value of k.
[2 marks]
(ii) Find the other two eigenvalues, showing all your working.
(b) An eigenvector corresponding to the eigenvalue -3 is $\left[\begin{array}{c}-4 \\ 3 \\ 1\end{array}\right]$.
(i) Find $\mathbf{N}^{2}\left[\begin{array}{c}-4 \\ 3 \\ 1\end{array}\right]$.
(ii) Find the values of x, y and z if $\mathbf{N}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-4 \\ 3 \\ 1\end{array}\right]$.

QUESTION REFRRENCE	Answer space for question 5

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 5

$6 \quad$ Let $\Delta(x)=\left|\begin{array}{ccc}a-1 & b+1 & x-1 \\ x^{2}-b^{2} & x^{2}-a^{2} & a^{2}-b^{2} \\ 2 & -2 & 2\end{array}\right|$
(a) Factorise $\Delta(x)$ as fully as possible.
(b) Solve $\Delta(x)=0$.

QUESTON REFERTNCE	Answer space for question 6

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 6

7 A plane transformation T is defined by

$$
\mathrm{T}:\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

where $\mathbf{M}=\left[\begin{array}{ccc}2 & 4 & 3 \\ 1 & 1 & 1 \\ 0 & 3 & k+1\end{array}\right]$ and k is a constant.
(a) In the case when \mathbf{M} is a singular matrix, show that the image of every point under T lies in the plane $3 x-6 y-2 z=0$.
(b) In the case when \mathbf{M} is a non-singular matrix:
(i) find \mathbf{M}^{-1}, in terms of k;
(ii) show that there is one value of k for which T has a line of invariant points and find the Cartesian equations of this line.

$\substack{\text { OUESTON } \\ \text { REFRRRNCE } \\ \text { RER }}$	Answer space for question 7

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 7

QUESTRON RERERTNCE	Answer space for question 7

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 7

8 The lines L_{1} and L_{2} have equations

$$
\left(\mathbf{r}-\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]\right) \times\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]=\mathbf{0} \text { and }\left(\mathbf{r}-\left[\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right]\right) \times\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]=\mathbf{0} \text { respectively. }
$$

(a) Find the direction cosines of a line which is perpendicular to both L_{1} and L_{2}.
(b) The plane Π_{1} has equation $\mathbf{r} .\left[\begin{array}{c}1 \\ b \\ -3\end{array}\right]=d$ and contains the line L_{1}. Find the value of b and the value of d.
(c) The plane Π_{2} has equation $\mathbf{r} .\left[\begin{array}{l}p \\ 4 \\ 0\end{array}\right]=-1$. Given that the acute angle between Π_{2} and L_{2} is θ, where $\cos \theta=\frac{\sqrt{8}}{3}$, find the value of p.
(d) By using your answers to parts (b) and (c), find the line of intersection of Π_{1} and Π_{2} in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$.

QUESTION RAFERT RERCE	Answer space for question 8

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 8

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 8

| $\substack{\text { QUESTION } \\ \text { REFERENCE } \\ \hline}$ | Answer space for question 8 |
| :--- | :--- | :--- |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

