Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$k_1 = 0.2 \times (2 - 1)\sqrt{2 + 1}$ (= 0.2 $\sqrt{3}$)	M1		PI. May be seen within given formula.
	= 0.346(410) (= *)			Accept 3dp or better as evidence of the
	$k_2 = 0.2 \times f(2.2, 1 + *)$			Mil line.
	$= 0.2 \times (2.2 - 1.346)\sqrt{2.2 + 1.346}$	M1		$0.2 \times (2.2 - 1 - c's k_1)\sqrt{(2.2 + 1 + c's k_1)}$ PI May be seen within given formula.
	= 0.321(4946)	A1		3dp or better. PI by later work
	$y(2.2) = y(2) + \frac{1}{2} [k_1 + k_2]$			
	$= 1 + 0.5 \times [0.3464 + 0.3214]$	ml		Dep on previous two Ms but ft on c's numerical values for k_1 and k_2 following
	$= 1 + 0.5 \times 0.667904$			evaluation of these.
	(= 1.33395) = 1.334 to 3dp	A1	5	CAO Must be 1.334 SC Any <u>consistent</u> use of a MR/MC of printed $f(x,y)$ expression in applying IEF, mark as SC2 for a correct ft final 3dp
				value otherwise SC0.
	Total		5	
2	$(x+8)^2 + (y-6)^2 = 100$ x ² + y ² + 16x - 12y + 64 + 36 (= 100)	B1		OE If polar form before expn of brackets award the B1 for correct expansions of both $(r\cos\theta - m)^2$ and $(r\sin\theta - n)^2$ where (m,n) = (-8, 6) or $(m,n) = (6, -8)$
	$r^2 + 16r\cos\theta - 12r\sin\theta = 0$	M1M1		1 st M1 for replacement using any one of { $[x^2 + y^2 = r^2, x = r \cos \theta, y = r \sin \theta](*)$ } 2 nd M1 for use of (*) to convert the form $x^2+y^2+ax+by=0$ correctly to the form
				$r^2 + ar\cos\theta + br\sin\theta = 0$ or better
	{ $r=0, \text{ origin}$ } Circle: $r = 12\sin\theta - 16\cos\theta$	A1	4	
	Total		4	

Q	Solution	Marks	Total	Comments
3(a)	$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 3y = 3x - 8e^{-3x}$ P. Integral : $y_{PI} = a + bx + cxe^{-3x}$ $y'_{PI} = b + ce^{-3x} - 3cxe^{-3x}$	M1		Product rule used at least once giving terms in the form $\pm pe^{-3x} \pm qxe^{-3x}$
	$y_{PI} = -6ce^{-3x} + 9cxe^{-3x}$ $-6ce^{-3x} + 9cxe^{-3x} + 2b + 2ce^{-3x} - 6cxe^{-3x}$ $-3a - 3bx - 3cxe^{-3x} = 3x - 8e^{-3x}$	M1		Substitution into LHS of DE
	-3b = 3; $2b - 3a = 0$; $-4c = -8$	ml		Dep on 2 nd M only Equating coeffs to obtain at least two of these correct eqns; PI by correct values for at least two constants
	$b = -1$; $c = 2$; $a = -\frac{2}{3}$	A2,1,0	5	Dep on M1M1m1 all awarded A1 if any two correct; A2 if all three correct but do not award the 2^{nd} A mark if terms in xe^{-3x} were incorrect in the M1 line
	$[y_{PI} = -\frac{2}{3} - x + 2xe^{-3x}]$			
(b)	Aux. eqn. $m^2 + 2m - 3 = 0$ (m+3)(m-1) = 0	M1		Factorising or using quadratic formula OE PI by correct two values of 'm' seen/used
	$(y_{CF} =)Ae^{-3x} + Be^{x}$ $(y_{GS} =)Ae^{-3x} + Be^{x} - \frac{2}{3} - x + 2xe^{-3x}$	A1 B1F	3	c's CF + c's PI with 2 arbitrary constants, non-zero values for a,b and c and no trig or ln terms in c's CF
(c)	$x = 0, y = 1 \implies 1 = A + B - \frac{2}{3}$	B1F		Only ft if previous B1F has been awarded
	$\frac{dy}{dx} = -3Ae^{-3x} + Be^{x} - 1 + 2e^{-3x} - 6xe^{-3x}$	F1		\mathbf{M}_{rest} (model) $\mathbf{x}_{\text{rest}}^{-3x}$ (model) $\mathbf{x}_{\text{rest}}^{-3x}$
	As $x \to \infty$, (e $x \to 0$ and) $xe^{-x} \to 0$ (As $x \to \infty$, $\frac{dy}{dx} \to -1$ so) $B = 0$	B1		B=0, where B is the coefficient of e^x .
	When $B = 0$, $1 = A - \frac{2}{3} \implies A = \frac{5}{3}$			
	$y = \frac{3}{3}e^{-3x} - \frac{2}{3} - x + 2xe^{-3x}$	A1	4	
	Iotal		14	

Q	Solution	Marks	Total	Comments
4	$\int \left(\frac{2x}{x^2+4} - \frac{4}{2x+3}\right) dx = \ln(x^2+4) - 2\ln(2x+3) \ \{+c\}$	B1 B1		OE
	(I=) $\lim_{a \to \infty} \int_{0}^{a} \left(\frac{2x}{x^{2}+4} - \frac{4}{2x+3} \right) dx$	M1		∞ replaced by a (OE) and $\begin{bmatrix} \lim \\ a \to \infty \end{bmatrix}$ seen or taken at any stage
	$= \lim_{a \to \infty} \left[\ln \left(x^2 + 4 \right) - 2 \ln (2x + 3) \right]_0^a$			Remaining marks are dep on getting $p\ln(x^2+4)+q\ln(2x+3)$ after integration, where p and q are non-zero constants
	$= \lim_{a \to \infty} \left[\ln(a^2 + 4) - 2\ln(2a + 3) \right] - (\ln 4 - 2\ln 3)$ $= \lim_{a \to \infty} \left[\ln\left(\frac{a^2 + 4}{(2a + 3)^2}\right) \right] - (\ln 4 - \ln 9)$	M1		Dealing with the 0 limit correctly and using $\ln P - \ln Q = \ln(P/Q)$ at least once at any stage either before or after using F()-F(0). OE
	$= \lim_{a \to \infty} \left[\ln \left(\frac{1 + \frac{4}{a^2}}{4 + \frac{12}{a} + \frac{9}{a^2}} \right) \right] - (\ln 4 - \ln 9)$	M1		Writing $F(a)$ OE in a suitable form when considering $a \rightarrow \infty$. OE
	$I = \int_0^\infty \left(\frac{2x}{x^2 + 4} - \frac{4}{2x + 3}\right) dx = \ln\frac{1}{4} - \ln\frac{4}{9} = \ln\frac{9}{16}$	A1	6	CSO
	Total		6	

Q	Solution	Marks	Total	Comments
5(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\ln(\ln x)\right] = \frac{1}{\ln x} \times \frac{1}{x}$	B1	1	ACF
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x\ln x} y = 9x^2$			
	An IF is exp { $\int [1/(x \ln x)] (dx)$ }	M1		and with integration attempted
	$= e^{\ln(\ln x)} = \ln x$	A1	2	AG Must see $e^{\ln(\ln x)}$ before $\ln x$
(ii)	$\ln x \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x} y = 9x^2 \ln x$			
	$\frac{\mathrm{d}}{\mathrm{d}x} \left[y \ln x \right] = 9x^2 \ln x$	M1		LHS as differential of $y \times \ln x$ PI
	$y \ln x = \int 9x^2 \ln x \mathrm{d}x$	A1		
	$\Rightarrow y \ln x = \int \ln x d[3x^3]$			
	$=3x^3\ln x - \int 3x^3\left(\frac{1}{x}\right)dx$	m1		$\int kx^2 \ln x (\mathrm{d}x) = px^3 \ln x - \int px^3 \left(\frac{1}{x}\right) (\mathrm{d}x)$
				or better
	$y \ln x = 3x^3 \ln x - x^3 (+c)$	A1		ACF Condone missing '+ c '
	When $x = e$, $y = 4e^3$, $4e^3 = 3e^3 - e^3 + c$	m1		Dep on previous M1m1. Boundary condition used in attempt to find value of 'c' after integration is completed
	$\Rightarrow y \ln x = 3x^{3} \ln x - x^{3} + 2e^{3}$ $y = 3x^{3} - \frac{(x^{3} - 2e^{3})}{\ln x}$	A1	6	ACF
	Total		9	

Q	Solution	Marks	Total	Comments
6 (a)	$y = (4 + \sin x)^{\frac{1}{2}}$ so $y^2 = 4 + \sin x$			
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$	M1		$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$
	$y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\cos x$	A1	2	
(a)	Altn			
	$\frac{dy}{dx} = \frac{1}{2} (4 + \sin x)^{-1/2} (\cos x)$	(M1)		Chain rule
	$y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\cos x$	(A1)	(2)	
(b)	$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = -\frac{1}{2}\sin x$	M1		Correct differentiation of $y \frac{dy}{dx}$
	When $x = 0$, $y = 2$, $\frac{dy}{dx} = \frac{1}{4}$, $2\frac{d^2y}{dx^2} + \left(\frac{1}{4}\right)^2 = 0$	A1F		Ft on RHS of M1 line as <i>k</i> sin <i>x</i>
	$y\frac{d^{3}y}{dx^{3}} + \frac{dy}{dx}\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}} = -\frac{1}{2}\cos x$	m1 A1		Correct LHS
	When x=0, $2\frac{d^3 y}{dx^3} + 3\left(\frac{1}{4}\right)\left(-\frac{1}{32}\right) = -\frac{1}{2} \Rightarrow \frac{d^3 y}{dx^3} = -\frac{61}{256}$	A1	5	CSO
(b)	Altn $d^2y = \frac{1}{(4 + \sin x)^{-3/2}(\cos^2 x)} + \frac{1}{(4 + \sin x)^{-1/2}(-\sin x)}$			Sign and numerical coeffs
	$\frac{1}{dx^2} = -\frac{1}{4} (4 + \sin x) - (\cos x) + \frac{1}{2} (4 + \sin x) - (-\sin x)$	(M1) (A1)		errors only.
	$d^3y = \frac{3}{(4 + \sin x)^{-2.5}}(\cos^3 x) = \frac{1}{(4 + \sin x)^{-1.5}}(-2\cos x\sin x)$	(11)		Sign and numerical coeffs
	$\frac{1}{dx^3} = \frac{1}{8} (4 + \sin x)^{-1.5} (\cos x) (-\sin x) - \frac{1}{4} (4 + \sin x)^{-0.5} \cos x$	(m1) (A1)		errors only.
	4^{3} , 2^{1} , 1^{1} , 1^{1} , 1^{1}	(***)		АСГ
	When $x = 0$, $\frac{d^{3}y}{dx^{3}} = \frac{3}{8} \times \frac{1}{32} - \frac{1}{2} \times \left(\frac{1}{2}\right) = -\frac{61}{256}$	(A1)	(5)	CSO
(c)	McC. Thm: $y(0) + x y'(0) + \frac{x^2}{2} y''(0) + \frac{x^3}{3!} y'''(0)$	M1		Maclaurin's theorem used with c's numerical values for $y(0)$, $y'(0)$, $y''(0)$ and y'''(0), all found with at least three being non-zero.
	$(4 + \sin x)^{\frac{1}{2}} \approx 2 + \frac{1}{4}x - \frac{1}{64}x^2 - \frac{61}{1536}x^3 \dots$	A1	2	CSO Previous 6 marks must have been scored
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)	$\sin^2 x \frac{d^2 y}{dx^2} - 2\sin x \cos x \frac{dy}{dx} + 2y = 2\sin^4 x \cos x$			
	$y = u \sin x$			
	$\frac{dy}{dx} = \frac{du}{dx}\sin x + u\cos x$ $\frac{d^2 v}{dx} = \frac{d^2 u}{dx} = \frac{du}{dx} = \frac{du}{dx}$	M1		Both derivatives attempted and product rule used at least twice.
	$\frac{d^2 y}{dx^2} = \frac{d^2 u}{dx^2} \sin x + \frac{du}{dx} \cos x + \frac{du}{dx} \cos x - u \sin x$	A1		Both correct
	$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} \sin^3 x + 2\frac{\mathrm{d}u}{\mathrm{d}x} \cos x \sin^2 x - u \sin^3 x - 2\frac{\mathrm{d}u}{\mathrm{d}x} \sin^2 x \cos x$ $- 2u \sin x \cos^2 x + 2u \sin x = 2\sin^4 x \cos x$	ml		Substitution into original DE
	$\frac{d^2u}{dx^2}\sin^3 x + u\sin x \left[-\sin^2 x - 2\cos^2 x + 2\right] = 2\sin^4 x \cos x$ $\frac{d^2u}{dx^2}\sin^3 x + u\sin x \left[-\sin^2 x + 2\sin^2 x\right] = 2\sin^4 x \cos x$ (Divide throughout by $\sin^3 x$,) $\frac{d^2u}{dx^2} + u = 2\sin x \cos x$	A1		Need to see clear use of the trig identity
	$\Rightarrow \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + u = \sin 2x$	A1	5	AG Completion, be convinced
(b)	For $\frac{d^2 u}{dr^2} + u = \sin 2x$, aux eqn, $m^2 + 1 = 0 \Rightarrow m = \pm i$	M1		PI
	CF: $(u =) A \sin x + B \cos x$	A1		OE
	For PI try $(u=)$ $p\sin 2x$	M1		Condone extra terms provided their coefficients are shown to be zero
	$-4p\sin 2x + p\sin 2x = \sin 2x \implies p = -\frac{1}{3}$	A1		Correct Particular integral
	GS for $u = A\sin x + B\cos x - \frac{1}{3}\sin 2x$	B1F		$u=g(x)$, where $g(x)=c$'s (CF+PI) with two arb. constants, PI \neq 0 and all real. Can be implied by next line.
	GS: $y = A\sin^2 x + B\sin x \cos x - \frac{1}{3}\sin 2x \sin x$	A1	6	y=f(x) with ACF for $f(x)$
	Total		11	

$ \begin{aligned} \mathbf{S}(\mathbf{a}) & \text{A tintersections of } r=2 \text{ and } r=3+2 \sin \theta \\ 2=3+2 \sin \theta \\ \sin \theta = -\frac{1}{2}, \Rightarrow \theta = \frac{7}{6}\pi, \theta = \frac{11}{6}\pi \\ \text{Al} \\ (t^{-}) & \left(2,\frac{7\pi}{6}\right), (Q^{-}) & \left(2,\frac{1\pi}{6}\right) \\ \text{Al} \\ (t^{-}) & \left(2,\frac{7\pi}{6}\right), (Q^{-}) & \left(2,\frac{1\pi}{6}\right) \\ \text{Angle between } OA \text{ and initial line} = \frac{\pi}{6} \\ \text{B} \text{IF} \\ \text{When } \theta = \frac{\pi}{6}, r=3+2 \sin \frac{\pi}{6}=4; \\ \text{A}\left(4,\frac{\pi}{6}\right) \\ \text{OA } = 4, OQ = 2 \\ \text{Angle } AOQ = \pi - \left(\theta_{0} - \theta_{p}\right) = \frac{\pi}{3} \\ \text{A}\left(4,\frac{\pi}{6}\right) \\ \text{A}Q^{2} = 4^{2} + 2^{2} - 2(4)(2) \cos AOQ (=12) \\ \text{A}Q^{2} = 4^{2} + 2^{2} - 2(4)(2) \cos AOQ (=12) \\ \text{A}Q = \sqrt{12} \\ $	Q	Solution	Marks	Total	Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 (a)	At intersections of $r=2$ and $r=3+2\sin\theta$			
$\begin{aligned} \sin \theta = -\frac{1}{2}, \Rightarrow \theta = \frac{7}{6}\pi, \ \theta = \frac{11}{6}\pi \\ (P=) \left(2, \frac{7\pi}{6}\right), \ (Q=) \left(2, \frac{11\pi}{6}\right) \\ \text{Angle between } OA \text{ and initial line } = \frac{\pi}{6} \\ \text{B1F} \\ \text{When } \theta = \frac{\pi}{6}, r=3+2\sin\frac{\pi}{6}=4; \\ \text{When } \theta = \frac{\pi}{6}, r=3+2\sin\frac{\pi}{6}=4; \\ \text{R1} \\ 2 \\ \text{Angle } AQQ = 2 \\ \text{Angle } AQQ = 2 \\ \text{Angle } AQQ = \pi - (\theta_0 - \theta_r) = \frac{\pi}{3} \\ \text{B1F} \\ AQ^2 = 4^2 + 2^2 - 2(4)(2)\cos AQQ (=12) \\ \text{A1} \\ AQ = \sqrt{12} \\ \text{A2} = \sqrt{12} \\ \text{A3} \\ \text{A4} = \frac{1}{3} \\ (\text{iii)} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \frac{4\pi}{3} \\ \text{A1} \\ \text{A2} = \sin (1 - 1) \sqrt{2} \\ \text{A2} = \sqrt{12} \\ \text{A2} = \sqrt{12} \\ \text{A2} = \sqrt{12} \\ \text{A3} \\ \text{A4} = \frac{1}{3} \\ \text{A1} \\ \text{A2} = \sqrt{12} \\ \text{A2} = \sqrt{12} \\ \text{A2} = \sqrt{12} \\ \text{A3} \\ \text{A4} \\ \text{A5} \\ \text{A5} \\ \text{A6} = \frac{1}{2} (2)^2 (\theta_u - \theta_r) \\ \text{A7} \\ \text{A7} = \sqrt{12} \\ \text{A7} = \sqrt{12} \\ \text{A7} \\ \text{A7} \\ \text{A7} = \sqrt{12} \\ \text{A7} \\ \text{A8} \\ \text{A7} \\ \text{A8} \\ \text{A7} \\ \text{A9} \\ \text{A9} \\ \text{A1} \\ \text{A7} \\ \text{A8} \\ \text{A7} \\ \text{A8} \\ \text{A7} \\ \text{A8} \\ \text{A7} \\ \text{A8} \\ \text{A7} \\ \text{A9} \\ \text{A7} \\$		$2 = 3 + 2\sin\theta$	M1		Elimation of <i>r</i>
$ (P) \left(2, \frac{7\pi}{6}\right), (Q) \left(2, \frac{11\pi}{6}\right) $ $ (D) (i) $ $ (D) (D)$		$\sin\theta = -\frac{1}{2}, \Rightarrow \theta = \frac{7}{6}\pi, \ \theta = \frac{11}{6}\pi$	A1		Any one correct solution of $\sin \theta = -\frac{1}{2}$
(b)(i) Angle between OA and initial line $= \frac{\pi}{6}$ B1F When $\theta = \frac{\pi}{6}$, $r = 3 + 2\sin\frac{\pi}{6} = 4$; $A\left(4, \frac{\pi}{6}\right)$ (ii) $OA = 4$, $OQ = 2$ Angle $AOQ = \pi - (\theta_Q - \theta_P) = \frac{\pi}{3}$ B1F $AQ^2 = 4^2 + 2^2 - 2(4)(2)\cos AOQ$ (=12) $AQ = \sqrt{12}$ A1 $AQ = \sqrt{12}$ A1 AI $AQ = \sqrt{12}$ A1 AI AR = a of minor sector OPQ of circle $= \frac{1}{2}(2)^2[\theta_Q - \theta_P]$ $= \frac{4\pi}{3}$ A1 Area of minor region OPQ of curve = $\frac{1}{2}\int \frac{11\pi}{6}$ $(4\sin^2 \theta + 12\sin\theta + 9) d\theta$ B1 $= \frac{1}{2}\int (2-2\cos 2\theta + 12\sin\theta + 9) d\theta$ A1 AI K AR = a f minor region OPQ of curve = $\frac{1}{2}\int \frac{11\pi}{7}$ $(4\sin^2 \theta + 12\sin\theta + 9) d\theta$ A1 $= \frac{1}{2}\left[2\theta - \sin 2\theta - 12\cos \theta + 9\theta\right] =$ A1F $\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2}\right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2}\right]$ A1 K K K K K K K K	.	$(P=) \left(2,\frac{7\pi}{6}\right), (Q=) \left(2,\frac{11\pi}{6}\right)$	A1	3	$\left(2,\frac{7\pi}{6}\right)$ and $\left(2,\frac{11\pi}{6}\right)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(b)(i)	Angle between <i>OA</i> and initial line = $\frac{\pi}{6}$	B1F		If not correct, ft on $\theta_p - \pi$
(ii) $OA = 4, OQ = 2$ Angle $AOQ = \pi - (\theta_0 - \theta_p) = \frac{\pi}{3}$ $AQ^2 = 4^2 + 2^2 - 2(4)(2)\cos AOQ$ (=12) $AQ = \sqrt{12}$ (iii) $AQ = \sqrt{12}$ $AQ = \sqrt{12}$ (iii) $Since 4^2 = 2^2 + (\sqrt{12})^2 \text{ so } 90^\circ$ $angle OQA = 90^\circ \Rightarrow AQ$ is a tangent E1 2 C A1 3 ACF but must be exact surd form. $Justifying why (angle OQA =)90^\circ OE$ $angle OQA = 90^\circ \Rightarrow AQ$ is a tangent E1 2 2 $QOA = 90^\circ = AQ$ is a tangent E1 2 2 $QOA = 0^\circ = QA = 90^\circ = AQ$ is a tangent E1 2 2 $QOA = 0^\circ = QA = 90^\circ = AQ$ is a tangent E1 2 $QOA = 0^\circ = QA = 90^\circ = AQ$ is a tangent E1 2 $QOA = 0^\circ = QA = 90^\circ = AQ$ is a tangent $\frac{1}{2}(2)^2[\theta_Q - \theta_P]$ $QOA = 0^\circ = QA = 0^\circ = AQ$ is a tangent $\frac{1}{2}(2)^2[\theta_Q - \theta_P]$ $QOA = 0^\circ = QA = 0^\circ = AQ$ is a tangent $\frac{1}{2}(2)^2[\theta_Q - \theta_P]$ $QOA = 0^\circ = QA = 0^\circ = AQ$ is a tangent $\frac{1}{2}(2)^2[\theta_Q - \theta_P] = A11^\circ AA1$ $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}(\theta_{-}A)^{\frac{3}{2}} + 6\sqrt{3}]$ $QOA = 0^\circ = QA = 0^\circ = AA1^\circ AA1$ $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}(\theta_{-}A)^{\frac{3}{2}} + 6\sqrt{3}]$ $QOA = 0^\circ = QA = 0^\circ = AA1^\circ AA1$ $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}(\theta_{-}A)^{\frac{3}{2}} + 6\sqrt{3}]$ $QOA = 0^\circ = AA1^\circ AA1$ $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}(\theta_{-}A)^{\frac{3}{2}} + 6\sqrt{3}]$ $QOA = 0^\circ = AA1^\circ AA1$ $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}(\theta_{-}A)^{\frac{3}{2}} + 6\sqrt{3}]$ $QOA = 0^\circ = AA1^\circ AA1$ $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}(\theta_{-}A)^{\frac{3}{2}} + 6\sqrt{3}]$ $QOA = 0^\circ = AA1^\circ AA1$ $QOA = 0^\circ = AA1^\circ AA1$ $QOA = 0^\circ = AA1^\circ AA1$ $QOA = 0^\circ AA1^\circ AA1^\circ AA1$ $QOA = 0^\circ AA1^\circ AA1^\circ AA1$ $QOA = 0^\circ AA1^\circ AA1^\circ AA1^\circ AA1$ $QOA = 0^\circ AA1^\circ$		When $\theta = \frac{\pi}{6}$, $r = 3 + 2\sin\frac{\pi}{6} = 4$; $A\left(4, \frac{\pi}{6}\right)$	B1	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(ii)	OA = 4, OQ = 2			
$AQ^{2} = 4^{2} + 2^{2} - 2(4)(2)\cos AOQ (=12)$ $AQ = \sqrt{12}$ $AQ = \sqrt{12}$ $A(2 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(2 = \sqrt{12})$ $A(1 = \sqrt{12})$ $A(2 =$		Angle $AOQ = \pi - (\theta_Q - \theta_P) = \frac{\pi}{3}$	B1F		If not correct, ft on $\pi - (\theta_Q - \theta_P)$. OE eg Cartesian coords of <i>A</i> and <i>Q</i> both
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$AQ^{2} = 4^{2} + 2^{2} - 2(4)(2)\cos AOQ$ (=12)	M1		attempted and at least one correct ft. Valid method to find AQ (or AQ^2). Ft on c's r_A for OA
(iii) Since $4^2 = 2^2 + (\sqrt{12})^2$ so 90° angle $QQA=90^\circ \Rightarrow AQ$ is a tangent E1 $= \frac{1}{2}(2)^2 [\theta_Q - \theta_P]$ M1 $= \frac{4\pi}{3}$ A1 Area of minor sector OPQ of circle $= \frac{1}{2}(2)^2 [\theta_Q - \theta_P]$ A1 $= \frac{4\pi}{3}$ A1 $= \frac{1}{2}\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} (4\sin^2\theta + 12\sin\theta + 9) d\theta$ M1 $= \frac{1}{2}\int (2 - 2\cos 2\theta + 12\sin\theta + 9) d\theta$ M1 $= \frac{1}{2}\int (2 - 2\cos 2\theta + 12\sin\theta + 9) d\theta$ M1 $= \frac{1}{2}[2\theta - \sin 2\theta - 12\cos\theta + 9\theta] =$ A1F $\begin{bmatrix} \frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2} \end{bmatrix} - \begin{bmatrix} \frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2} \end{bmatrix}$ A1 $= \frac{11\pi}{3} - \frac{11\sqrt{3}}{2}$ A1 Area of shaded region $= \frac{4\pi}{3} - \{\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\}$ M1 $= \frac{11}{2}\sqrt{3} - \frac{7}{3}\pi = \frac{1}{6}(33\sqrt{3} - 14\pi)$ A1 9 Convert 19		$AQ = \sqrt{12}$	A1	3	ACF but must be exact surd form.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(iii)	Since $4^2 = 2^2 + (\sqrt{12})^2$ so 90°	E1		Justifying why (angle <i>OQA</i> =) 90° OE
(c) Area of minor sector OPQ of circle $= \frac{1}{2}(2)^{2} \left[\theta_{Q} - \theta_{P} \right]$ $= \frac{4\pi}{3}$ Area of minor region OPQ of curve = $\frac{1}{2} \int \frac{11\pi}{2} \frac{\pi}{6} (4\sin^{2}\theta + 12\sin\theta + 9) d\theta$ B1 $= \frac{1}{2} \int (2 - 2\cos 2\theta + 12\sin\theta + 9) d\theta$ M1 $= \frac{1}{2} \left[2\theta - \sin 2\theta - 12\cos\theta + 9\theta \right] =$ A1F $\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2} \right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2} \right]$ A1 $\left\{ = \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \right\}$ A1 Area of shaded region = $\frac{4\pi}{3} - \left\{ \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \right\}$ M1 $\left\{ = \frac{11}{2}\sqrt{3} - \frac{7}{3}\pi = \frac{1}{6}(33\sqrt{3} - 14\pi) \right\}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		angle $OQA=90^\circ \Rightarrow AQ$ is a tangent	E1	2	Must have convincingly shown that $OQA = 90^{\circ}$
(c) Area of minor sector OPQ of circle $= \frac{1}{2}(2)^{2}\left[\theta_{Q} - \theta_{P}\right]$ $= \frac{4\pi}{3}$ Area of minor region OPQ of curve = $\frac{1}{2}\int_{\frac{\pi}{2}}^{\frac{11\pi}{\pi}} (4\sin^{2}\theta + 12\sin\theta + 9) d\theta$ M1 $= \frac{1}{2}\int (2 - 2\cos 2\theta + 12\sin\theta + 9) d\theta$ M1 $= \frac{1}{2}\left[2\theta - \sin 2\theta - 12\cos\theta + 9\theta\right] =$ A1F $\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2}\right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2}\right]$ A1 $\left\{= \frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$ A1 $eg\left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3}\right] - \left[\frac{33\pi}{2}\right]$ A1 $eg\left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3}\right] - \left[\frac{33\pi}{2}\right]$ A1 $\frac{1}{2}(2)^{2}\left[\theta_{Q} - \theta_{P}\right]$ P1 by combined $-\frac{7\pi}{3}$ OE term later. $Use of \frac{1}{2}\int r^{2} d\theta \text{ or use of } \int_{\theta_{P}}^{3\pi/2} r^{2} d\theta \text{ OE term later}$ CE eg $\left[\frac{33\pi}{2}\right] - \left[\frac{77\pi}{6} - \frac{\sqrt{3}}{2} + 6\sqrt{3}\right]$ $eg\left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3}\right] - \left[\frac{33\pi}{2}\right]$ Area of shaded region $= \frac{4\pi}{3} - \left\{\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$ M1 $\frac{1}{2}(2)^{2}\left[\theta_{Q} - \theta_{P}\right] - \frac{1}{2}\int_{\theta_{P}}^{\theta_{Q}} (3 + 2\sin\theta)^{2}$ A1 9 CSO $\frac{1}{6}(33\sqrt{3} - 14\pi)$. (m = 33, n = -1)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(c)	Area of minor sector <i>OPQ</i> of circle = $\frac{1}{2}(2)^2 [\theta_Q - \theta_P]$	M1		$\frac{1}{2}(2)^2 \Big[\theta_Q - \theta_P\Big]$
Area of shaded region ∂PQ of curve =M1Use of $\frac{1}{2}\int r^2 d\theta$ or use of $\int_{\theta_p}^{3\pi/2} r^2 d\theta$ O $\frac{1}{2}\int \frac{11\pi}{r_0^6} (4\sin^2\theta + 12\sin\theta + 9) d\theta$ M1 $Use of \frac{1}{2}\int r^2 d\theta$ or use of $\int_{\theta_p}^{3\pi/2} r^2 d\theta$ O $=\frac{1}{2}\int (2-2\cos 2\theta + 12\sin\theta + 9) d\theta$ M1 $r^2 = 4\sin^2\theta + 12\sin\theta + 9$ $=\frac{1}{2}[2\theta - \sin 2\theta - 12\cos\theta + 9\theta] =$ A1F $Vse of \cos 2\theta = \pm 1 \pm 2\sin^2\theta$ with $k\int r^2 (\theta)$ $\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2}\right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2}\right]$ A1 $OE eg \left[\frac{33\pi}{2}\right] - \left[\frac{77\pi}{6} - \frac{\sqrt{3}}{2} + 6\sqrt{3}\right]$ $\left\{=\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$ A1 $eg \left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3}\right] - \left[\frac{33\pi}{2}\right]$ $Area of shaded region = \frac{4\pi}{3} - \left\{\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$ M1 $\frac{1}{2}(2)^2[\theta_Q - \theta_P] - \frac{1}{2}\int_{\theta_P}^{\theta_Q} (3 + 2\sin\theta)^2$ $=\frac{11}{2}\sqrt{3} - \frac{7}{3}\pi = \frac{1}{6}(33\sqrt{3} - 14\pi)$ A19 $CSO \frac{1}{6}(33\sqrt{3} - 14\pi) \cdot (m = 33, n = -1)$		$=\frac{4\pi}{3}$	A1		PI by combined $-\frac{7\pi}{3}$ OE term later.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Area of minor region OPQ of curve =			3π/2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{1}{2}\int_{\frac{7\pi}{6}}^{\frac{6}{6}} (4\sin^2\theta + 12\sin\theta + 9) \mathrm{d}\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$ or use of $\int_{\theta_p}^{\pi} r^2 d\theta$ OE
$ = \frac{1}{2} \int (2 - 2\cos 2\theta + 12\sin \theta + 9) d\theta $ $ = \frac{1}{2} [2\theta - \sin 2\theta - 12\cos \theta + 9\theta] = $ $ = \frac{1}{2} [2\theta - \sin 2\theta - 12\cos \theta + 9\theta] = $ $ = \frac{11\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2} - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2}\right] $ $ = \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \} $ $ = \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \} $ $ = \frac{11}{2} \sqrt{3} - \frac{7}{3} \pi = \frac{1}{6} (33\sqrt{3} - 14\pi) $ $ = \frac{11}{2} \sqrt{3} - \frac{7}{3} \pi = \frac{1}{6} (33\sqrt{3} - 14\pi) $ $ = \frac{11}{2} \sqrt{3} - \frac{7}{3} \pi = \frac{1}{6} (33\sqrt{3} - 14\pi) $ $ = \frac{11}{2} \sqrt{3} - \frac{7}{3} \pi = \frac{1}{6} (33\sqrt{3} - 14\pi) $ $ = \frac{119}{2} \sqrt{3} - \frac{1}{2} \sqrt{3} + \frac{11}{2} 3$		1 c	B1		$r^2 = 4\sin^2\theta + 12\sin\theta + 9$
$ \begin{aligned} &= \frac{1}{2} \left[2\theta - \sin 2\theta - 12 \cos \theta + 9\theta \right] = \\ &\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2} \right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2} \right] \\ &\left\{ = \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \right\} \end{aligned} \qquad A1F \qquad Ft wrong non zero coefficients, ie for correct integration of a + b\cos 2\theta + csOE eg \left[\frac{33\pi}{2} \right] - \left[\frac{77\pi}{6} - \frac{\sqrt{3}}{2} + 6\sqrt{3} \right] \\ ⪚ \left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \right] - \left[\frac{33\pi}{2} \right] \\ &Area of shaded region = \frac{4\pi}{3} - \left\{ \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \right\} \end{aligned} \qquad M1 \qquad g \left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \right] - \left[\frac{33\pi}{2} \right] \\ &= \frac{11}{2} \sqrt{3} - \frac{7}{3} \pi = \frac{1}{6} (33\sqrt{3} - 14\pi) \end{aligned} \qquad A1 \qquad 9 \qquad CSO \frac{1}{6} (33\sqrt{3} - 14\pi) \cdot (m = 33, n = -1) \end{aligned}$		$= \frac{1}{2} \int (2 - 2\cos 2\theta + 12\sin \theta + 9) d\theta$	M1		Use of $\cos 2\theta = \pm 1 \pm 2\sin^2 \theta$ with $k \int r^2 (d\theta)$
$\begin{bmatrix} \frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2} \end{bmatrix} - \begin{bmatrix} \frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2} \end{bmatrix}$ $\begin{cases} = \frac{11\pi}{3} - \frac{11\sqrt{3}}{2} \end{cases}$ $A1$ $A1$ $BE \ eg \ \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix} - \begin{bmatrix} \frac{77\pi}{6} - \frac{\sqrt{3}}{2} + 6\sqrt{3} \end{bmatrix}$ $eg \ \begin{bmatrix} \frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1$ $B1$ $B2 \ \begin{bmatrix} \frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{33\pi}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \end{bmatrix} - \begin{bmatrix} \frac{13\pi}{2} + 6\sqrt{3} \\ \frac{12}{6} + \frac{\sqrt{3}}{2} - \frac{12}{6} + \frac{\sqrt{3}}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - \frac{12}{6} + \frac{\sqrt{3}}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - \frac{12}{6} + \frac{\sqrt{3}}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - \frac{12}{6} + \frac{\sqrt{3}}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - \frac{12}{6} + \frac{\sqrt{3}}{2} \end{bmatrix}$ $B1 \ \begin{bmatrix} \frac{12}{6} + \frac{\sqrt{3}}{2} - \frac{12}{6} + \frac{\sqrt{3}}{2} + $		$=\frac{1}{2}\left[2\theta - \sin 2\theta - 12\cos \theta + 9\theta\right] =$	A1F		Ft wrong non zero coefficients, ie for correct integration of $a + b\cos 2\theta + c\sin \theta$
Area of shaded region = $\frac{4\pi}{3} - \left\{\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$ M1 = $\frac{11}{2}\sqrt{3} - \frac{7}{3}\pi = \frac{1}{6}\left(33\sqrt{3} - 14\pi\right)$ A1 Total 19 N1 $\frac{1}{2}(2)^{2}\left[\theta_{Q} - \theta_{P}\right] - \frac{1}{2}\int_{\theta_{P}}^{\theta_{Q}} (3 + 2\sin\theta)^{2}$ CSO $\frac{1}{6}\left(33\sqrt{3} - 14\pi\right)$. $(m = 33, n = -1)$		$\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2}\right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2}\right]$ $\left\{=\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$	A1		OE eg $\left[\frac{33\pi}{2}\right] - \left[\frac{77\pi}{6} - \frac{\sqrt{3}}{2} + 6\sqrt{3}\right]$ eg $\left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3}\right] - \left[\frac{33\pi}{2}\right]$
$= \frac{11}{2}\sqrt{3} - \frac{7}{3}\pi = \frac{1}{6}\left(33\sqrt{3} - 14\pi\right) \qquad A1 \qquad 9 \qquad CSO \frac{1}{6}\left(33\sqrt{3} - 14\pi\right) \cdot (m = 33, n = -1)$ Total 19		Area of shaded region = $\frac{4\pi}{3} - \left\{\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$	M1		$\frac{1}{2}(2)^{2}\left[\theta_{Q}-\theta_{P}\right]-\frac{1}{2}\int_{\theta_{P}}^{\theta_{Q}}(3+2\sin\theta)^{2} d\theta$
Total 19		$=\frac{11}{2}\sqrt{3}-\frac{7}{3}\pi=\frac{1}{6}(33\sqrt{3}-14\pi)$	A1	9	CSO $\frac{1}{6} (33\sqrt{3} - 14\pi)$. $(m = 33, n = -14)$
		Total		<u>1</u> 9	
TOTAL 75		TOTAL		75	