AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature \qquad

A-level

MATHEMATICS

Unit Further Pure 3

Wednesday 17 May 2017 Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 It is given that $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\frac{x+2 \sqrt{y}}{x+1}
$$

and

$$
y(1)=4
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.2$, to obtain an approximation to $y(1.2)$.
(b) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a), to obtain an approximation to $y(1.4)$, giving your answer to three decimal places.

$\substack{\text { QUESTTON } \\ \text { REFRRENCE } \\ \text { RER }}$	Answer space for question 1

QUESTION PARERENCE	Answer space for question 1

2 (a) It is given that $y=\mathrm{f}(x)$ is the solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3 x^{2}+5
$$

such that $\mathrm{f}(0)=0$ and $\mathrm{f}^{\prime}(0)=1$.
(i) Without solving the differential equation, show that $\mathrm{f}^{\prime \prime \prime}(0)=-6$ and find the value of $f^{(4)}(0)$.
(ii) Hence find the first three non-zero terms in the expansion, in ascending powers of x, of $\mathrm{f}(x)$.
(b) Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3 x^{2}+5
$$

$\substack{\text { QUESTRON } \\ \text { REFRRENCE }}$	
	Answer space for question 2

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 2

QUESTRON REFRRENCE	Answer space for question 2

QuESTON RFFRRENCE	Answer space for question 2

3 The first four non-zero terms in the expansion, in ascending powers of x, of $\ln (1+\sin x)$ are $x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}$.
(a) (i) Write down the expansion of $\ln (1-\sin x)$ in ascending powers of x up to and including the term in x^{4}.
[1 mark]
(ii) Hence show that the first two non-zero terms in the expansion, in ascending powers of x, of $\ln (\cos x)$ are $-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}$.
(iii) Hence, or otherwise, find the first two non-zero terms in the expansion, in ascending powers of x, of $\ln (\sec x+\tan x)$.
(b) Find $\lim _{x \rightarrow 0}\left[\frac{\ln (\sec x+\tan x)}{2 x+5 x^{3}}\right]$.

QUESTION REFERTNCE	Answer space for question 3

QUESTION
Answer space for question 3

QUESTTON REFERENCE	Answer space for question 3

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 3

4 (a) Given that $x=\mathrm{e}^{t}$ and y is a function of x, show that $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ can be expressed in the form $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+n \frac{\mathrm{~d} y}{\mathrm{~d} t}$, where n is an integer.
(b) Hence use the substitution $x=\mathrm{e}^{t}$ to find the general solution of the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=10 x, \quad x>0
$$

giving your answer in the form $y=\mathrm{f}(x)$.

$\substack{\text { QUESTRON } \\ \text { RERERENCEE }}$	Answer space for question 4

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 4

5 Evaluate the improper integral $\int_{0}^{\frac{\pi}{6}}\left(\frac{2}{3 x}-\frac{\sin 3 x}{1-\cos 3 x}\right) \mathrm{d} x$, showing the limiting process used. Give your answer as a single term.

\qquad

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 5

6 At any point (x, y) on a curve C,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=2(x-1) \mathrm{e}^{-2 x}+4
$$

(a) By using an integrating factor, find the general solution of this differential equation, giving your answer in the form $y=\mathrm{f}(x)$.
(b) Show that C has a horizontal asymptote and state the equation of this asymptote.
(c) The curve C passes through the point $\left(-1,2+4 \mathrm{e}^{2}\right)$, and the line $y=k$ intersects C in three distinct points. Find all possible values for the constant k.

$\underset{\substack{\text { QuESTION } \\ \text { REERERERCN }}}{\text { R. }}$	Answer space for question 6

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 6

QUESTTON REFERENCE	Answer space for question 6

$\substack{\text { QUESTION } \\ \text { REFRRENCE }}$	Answer space for question 6

$7 \quad$ The Cartesian equation of a parabola C is $y^{2}=8(2-x), x \leqslant 2$.
(a) (i) Show that $y^{2}=8(2-x)$ may be written in the form $x^{2}+y^{2}=(k-x)^{2}$, where k is an integer.
(ii) Using the origin O as the pole and the positive x-axis as the initial line, show that, for $r \geqslant 2$, the polar equation of the parabola C is

$$
r=2 \sec ^{2} \frac{\theta}{2}, \quad-\pi<\theta<\pi
$$

(b) The straight line with polar equation $\tan \theta=\sqrt{3}$ intersects the parabola C at the points P and Q.
(i) Find the polar coordinates of P and Q.
(ii) The area of the region bounded by the line segment $P Q$ and the curve C is A_{1}. The area of the circle with diameter $P Q$ is A_{2}.

Show that $\frac{A_{2}}{A_{1}}=\pi \sqrt{3}$.

$\substack{\text { QUESTTON } \\ \text { RARERENEE } \\ \text { ReR }}$	Answer space for question 7

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 7

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 7

$\substack{\text { QUESTTON } \\ \text { ReFERRNCE }}$	Answer space for question 7

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

