

General Certificate of Education Advanced Level Examination

Mathematics

Unit Further Pure 3

Monday 10 June 20139.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

It is given that $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=(x-y) \sqrt{x+y}
$$

and

$$
y(2)=1
$$

Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.2$, to obtain an approximation to $y(2.2)$, giving your answer to three decimal places. (5 marks)

2
The Cartesian equation of a circle is $(x+8)^{2}+(y-6)^{2}=100$.
Using the origin O as the pole and the positive x-axis as the initial line, find the polar equation of this circle, giving your answer in the form $r=p \sin \theta+q \cos \theta$.

3 (a) Find the values of the constants a, b and c for which $a+b x+c x \mathrm{e}^{-3 x}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=3 x-8 \mathrm{e}^{-3 x} \tag{5marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.
(c) Hence express y in terms of x, given that $y=1$ when $x=0$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x} \rightarrow-1$ as $x \rightarrow \infty$.

4 Evaluate the improper integral

$$
\int_{0}^{\infty}\left(\frac{2 x}{x^{2}+4}-\frac{4}{2 x+3}\right) \mathrm{d} x
$$

showing the limiting process used and giving your answer in the form $\ln k$, where k is a constant.

5 (a) Differentiate $\ln (\ln x)$ with respect to x.
(b) (i) Show that $\ln x$ is an integrating factor for the first-order differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{x \ln x} y=9 x^{2}, \quad x>1 \tag{2marks}
\end{equation*}
$$

(ii) Hence find the solution of this differential equation, given that $y=4 \mathrm{e}^{3}$ when $x=\mathrm{e}$.
(6 marks)
$6 \quad$ It is given that $y=(4+\sin x)^{\frac{1}{2}}$.
(a) Express $y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ in terms of $\cos x$.
(b) Find the value of $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ when $x=0$.
(c) Hence, by using Maclaurin's theorem, find the first four terms in the expansion, in ascending powers of x, of $(4+\sin x)^{\frac{1}{2}}$.

7 A differential equation is given by

$$
\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x, \quad 0<x<\pi
$$

(a) Show that the substitution

$$
y=u \sin x
$$

where u is a function of x, transforms this differential equation into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+u=\sin 2 x \tag{5marks}
\end{equation*}
$$

(b) Hence find the general solution of the differential equation

$$
\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x
$$

giving your answer in the form $y=\mathrm{f}(x)$.

The diagram shows a sketch of a curve and a circle.

The polar equation of the curve is

$$
r=3+2 \sin \theta, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

The circle, whose polar equation is $r=2$, intersects the curve at the points P and Q, as shown in the diagram.
(a) Find the polar coordinates of P and the polar coordinates of Q.
(b) A straight line, drawn from the point P through the pole O, intersects the curve again at the point A.
(i) Find the polar coordinates of A.
(ii) Find, in surd form, the length of $A Q$.
(iii) Hence, or otherwise, explain why the line $A Q$ is a tangent to the circle $r=2$.
(2 marks)
(c) Find the area of the shaded region which lies inside the circle $r=2$ but outside the curve $r=3+2 \sin \theta$. Give your answer in the form $\frac{1}{6}(m \sqrt{3}+n \pi)$, where m and n are integers.

