

General Certificate of Education Advanced Level Examination January 2012

Mathematics

Unit Further Pure 3

Monday 23 January 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\frac{y-x}{y^{2}+x}
$$

and

$$
y(1)=2
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(1.1)$.
(b) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a), to obtain an approximation to $y(1.2)$, giving your answer to three decimal places.

2 Find

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[\frac{\sqrt{4+x}-2}{x+x^{2}}\right] \tag{3marks}
\end{equation*}
$$

3 Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=26 \mathrm{e}^{x}
$$

given that $y=5$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=11$ when $x=0$. Give your answer in the form $y=\mathrm{f}(x)$.
(10 marks)

4 (a) By using an integrating factor, find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=\ln x \tag{7marks}
\end{equation*}
$$

(b) Hence, given that $y \rightarrow 0$ as $x \rightarrow 0$, find the value of y when $x=1$.

5 (a) Explain why $\int_{\frac{1}{2}}^{\infty} \frac{x(1-2 x)}{x^{2}+3 \mathrm{e}^{4 x}} \mathrm{~d} x$ is an improper integral.
(b) By using the substitution $u=x^{2} \mathrm{e}^{-4 x}+3$, find

$$
\int \frac{x(1-2 x)}{x^{2}+3 \mathrm{e}^{4 x}} \mathrm{~d} x
$$

(c) Hence evaluate $\int_{\frac{1}{2}}^{\infty} \frac{x(1-2 x)}{x^{2}+3 \mathrm{e}^{4 x}} \mathrm{~d} x$, showing the limiting process used. (4 marks)

6 (a) Given that $y=\ln \cos 2 x$, find $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}$.
(6 marks)
(b) Use Maclaurin's theorem to show that the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \cos 2 x$ are $-2 x^{2}-\frac{4}{3} x^{4}$.
(c) Hence find the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \sec ^{2} 2 x$.
$7 \quad$ It is given that, for $x \neq 0, y$ satisfies the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2(3 x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+3 y(3 x+2)=18 x
$$

(a) Show that the substitution $u=x y$ transforms this differential equation into

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} u}{\mathrm{~d} x}+9 u=18 x
$$

(b) Hence find the general solution of the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2(3 x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+3 y(3 x+2)=18 x
$$

giving your answer in the form $y=\mathrm{f}(x)$.

8 The diagram shows a sketch of the curve C with polar equation

$$
r=3+2 \cos \theta, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

(a) Find the area of the region bounded by the curve C.
(b) A circle, whose cartesian equation is $(x-4)^{2}+y^{2}=16$, intersects the curve C at the points A and B.
(i) Find, in surd form, the length of $A B$.
(ii) Find the perimeter of the segment $A O B$ of the circle, where O is the pole. (3 marks)

