A-level Mathematics

MFP2 - Further Pure 2
Mark scheme

6360
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & \begin{array}{r} \mathrm{f}(r)-\mathrm{f}(r+1)= \\ =\frac{1}{4 r-1}-\frac{1}{4(r+1)-1} \\ \\ \begin{array}{r} \frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\ldots \text { OE } \\ \text { or } \mathrm{f}(1)-\mathrm{f}(2)+\mathrm{f}(2)-\mathrm{f}(3)+\ldots \end{array} \\ \begin{array}{r} \sum_{r=1}^{50}[\mathrm{f}(r)-\mathrm{f}(r+1)] \end{array} \\ =\mathrm{f}(1)-\mathrm{f}(51) \\ =\frac{1}{3}-\frac{1}{203} \\ \sum_{r=1}^{50} \frac{1}{(4 r-1)(4 r+3)}=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{203}\right) \end{array} \\ & =\frac{50}{609} \end{aligned}$	M1 A1 M1 A1 m1 A1	2	or $\frac{1}{4 r-1}-\frac{1}{4 r+3}$ Clear attempt to use method of differences possibly with one error PI by first A1 "their" $\frac{1}{4} \times$ "their" $\left(\frac{1}{3}-\frac{1}{203}\right)$
	Total		6	
(b)	Allow recovery for full marks in part (b) even if errors seen in part (a)			

\begin{tabular}{|c|c|c|c|c|}
\hline Q2 \& Solution \& Mark \& Total \& Comment \\
\hline \begin{tabular}{l}
(a)(i) \\
(ii) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 1-2 \mathrm{i} \\
\& (\alpha \beta=1+4=) \\
\& \sum \alpha \beta=\frac{17}{3} \\
\& \alpha \gamma+\beta \gamma+\text { "their" } 5=\text { "their" } \frac{17}{3} \\
\& \Rightarrow \gamma=\frac{1}{3}
\end{aligned}
\]
\[
\begin{array}{r}
\alpha+\beta+\gamma=\frac{-p}{3} \quad, \quad \alpha \beta \gamma=\frac{-q}{3} \\
\quad p=-7 \\
\quad q=-5
\end{array}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 1
1

3

3 \& | PI by next line |
| :--- |
| FT "their" $\alpha \beta$ and $\sum \alpha \beta$ values |
| Alternative $z^{3}+\frac{p}{3} z^{2}+\frac{17}{3} z+\frac{q}{3}$ |
| quadratic factor $z^{2}-2 z+5 \mathbf{B 1}$ $\left(z^{2}-2 z+5\right)(z-\gamma)$ comparing coefficient of $z: \quad 5+2 \gamma=\frac{17}{3} \mathbf{M 1}$ $\begin{equation*} \Rightarrow \gamma=\frac{1}{3} \mathbf{A} \mathbf{1} \tag{3} \end{equation*}$ |
| Either of these expressions correct |
| PI by correct p or q |
| Alternative comparing coefficients either $-5 \gamma=\frac{q}{3}$ or $-\gamma-2=\frac{p}{3} \quad$ M1 $p=-7 \mathbf{A 1} ; q=-5 \mathbf{A 1}$ (3) |

\hline \& Total \& \& 8 \&

\hline (b)

(c) \& \multicolumn{4}{|l|}{| Allow M1 for $5+2 \gamma=-\frac{17}{3}$ if $\quad \sum \alpha \beta$ not seen |
| :--- |
| Example : $\alpha+\beta+\gamma=-p \quad ; \quad \alpha+\beta+\gamma=2+\frac{1}{3}=\frac{7}{3} \Rightarrow p=-7 \quad$ Award M1 A1 assuming first statement was meant as candidate's "reminder" for signs but "wiggly underline" incorrect statement |
| Example : $\gamma=\frac{4}{3} \quad \alpha+\beta+\gamma=\frac{10}{3} \quad ; \quad \Rightarrow p=-10 \quad$ Award M1 (implied) A0 |
| Alternative: substituting $z=1+2 \mathrm{i}$ or $1-2 \mathrm{i}$ leading to correct simultaneous equations $3 p-q+16=0$ $4 p+28=0 \mathbf{M 1}$ then $p=-7 \mathbf{A 1} ; q=-5$ A1 |}

\hline
\end{tabular}

(a) Condone omission of brackets in final line or poor use of brackets if recovered for A1cso
(b) If M1 is not earned, award SC B1 for sight of $\int \frac{1}{1-x^{2}} \mathrm{~d} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ or $\tanh ^{-1} x$
or SC B1 for sight of $\int \frac{p}{1+x}+\frac{q}{1-x} \mathrm{~d} x=p \ln (1+x)-q \ln (1-x)$

Q4	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{1}{1+(\sqrt{3 x})^{2}} \\ & \times \frac{1}{2} \times \sqrt{3} x^{-\frac{1}{2}} \text { OE } \\ & \begin{array}{r} \left(\int=\right) k \tan ^{-1} \sqrt{3 x} \\ \left(\int=\right) \frac{2}{\sqrt{3}} \tan ^{-1} \sqrt{3 x} \\ k\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\ \\ =\frac{\sqrt{3} \pi}{18} \end{array} \end{aligned}$	M1 A1 M1 A1 m1 A1	2	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+3 x}$ may have $\frac{3}{\sqrt{3}}$ instead of $\sqrt{3}$ For guidance $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{3}}{2(1+3 x) \sqrt{x}}$ or $k \frac{\pi}{12} \quad$ PI by correct answer
	Total		6	
(a) (b)	Alternative $1 \sec ^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=k x^{-\frac{1}{2}}$ M1 leading to correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x A1 Alternative $2 x=A \tan ^{2} y \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=k \sec ^{2} y \tan y \quad$ M1 leading to correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $x \quad$ A1 If a substitution such as $u=\sqrt{x}$ is used giving $\int \frac{2}{1+3 u^{2}} \mathrm{~d} u$ then $\mathbf{M 1}$ is still only earned for $k \tan ^{-1} \sqrt{3} u$ and A1 for $\frac{2}{\sqrt{3}} \tan ^{-1} \sqrt{3} u$ and $\mathbf{m 1}$ A1 as above			

Q5	Solution	Mark	Total	Comment
(a) (b)(i)	$\begin{aligned} & (-4 \sqrt{3})^{2}+4^{2} \quad(=48+16) \\ & (\text { Modulus }=) 8 \end{aligned}$ circle	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$	2	PI by correct answer condone freehand circle
(b)(i)	centre at $-4 \sqrt{3}+4 \mathrm{i}$ circle touching negative real axis and not meeting imaginary axis	A1 A1	3	
(ii)	Right angled triangle hyp = 8 \& radius = 4 $\& \alpha=\frac{\pi}{6}$ as in diagram	M1		May consider the triangle with one side on real axis but only earns M1 when angle doubled to $\frac{\pi}{3}$
	$\arg w=\frac{2 \pi}{3}$	A1	2	must be exact but allow $\frac{4 \pi}{6}$ etc
(c)	$r=(8)^{\frac{1}{3}} \quad(=2)$	B1F		$r=(\text { modulus from }(\mathbf{a}))^{\frac{1}{3}}$
	$\arg (-4 \sqrt{3}+4 i)=\frac{5 \pi}{6}$	B1		
	Use of de Moivre "their" arg/3	M1		3 correct values of $\theta \bmod 2 \pi$
	$\theta=\frac{5 \pi}{18}, \frac{17 \pi}{18}, \frac{-7 \pi}{18}$	A1		eg third angle $\frac{29 \pi}{18}$
	Roots are $2 e^{\mathrm{i} \frac{5 \pi}{18}}, 2 e^{\mathrm{i} \frac{17 \pi}{18}}, 2 \mathrm{e}^{\mathrm{i}\left(\frac{-7 \pi}{18}\right)}$	A1	5	must be in exactly this form for final mark final root may be written as $2 e^{-\mathrm{i} \frac{7 \pi}{18}}$ etc
	Total		12	
(a)	NMS (Modulus =) 8 earns M1(implied) A1			
(b)(i)	The two A1 marks are independent; first A1 PI by $-4 \sqrt{3}$ marked on $\operatorname{Re}(z)$ axis \& 4 marked on $\operatorname{Im}(z)$ axis; condone centre stated as $(-4 \sqrt{3}, 4)$ for first A1 but withhold first A1 if point of contact labelled as anything other than $-4 \sqrt{3}$			
(c)	Example: $r=2 ; \quad \theta=\frac{2 k \pi}{3}+\frac{5 \pi}{18} \quad k=0,1,-1$ scores B1F, B1, M1, A1, A0			

(a) May find $\ln \left(y \pm \sqrt{y^{2}+1}\right)$ and reason about not having negative \ln for $\mathbf{E 1}$

Alternative: $y=\sinh x \Rightarrow 1+y^{2}=\cosh ^{2} x \mathbf{M 1 ;} \quad$ Rejecting minus sign since $\cosh x>0$ E1 $\cosh x=\sqrt{1+y^{2}} \quad ; \quad y+\sqrt{1+y^{2}}=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}+\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=\mathrm{e}^{x} \mathbf{A 1} \quad \Rightarrow x=\ln \left(y+\sqrt{y^{2}+1}\right)$ A1
(b)(i) If using double angle formula incorrectly, eg $6 \cosh ^{2} x=3 \cosh 2 x-3 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 \sinh 2 x=12 \sinh x \cosh x$ then award B0 for this term but allow final A1 although FIW, since this will be penalised heavily in part (b)(ii)
(ii) May use $\cosh ^{-1} 2=\ln (2+\sqrt{3})$ when finding $\mathrm{F}\left(\cosh ^{-1} 2\right)$ and $\mathbf{m} \mathbf{1}$ may be implied by correct final answer

Q7	Solution	Mark	Total	Comment
	$n=1: \text { LHS }=1+p ; \text { RHS }=1+p$ Therefore result is true when $n=1$ Assume inequality is true for $n=k(*)$ Multiply both sides by $1+p$ $(1+p)^{k+1} \ldots(1+k p)(1+p)$ Inequality only valid since multiplication by positive number because $1+p \ldots 0$ $\begin{aligned} & \text { Considering } \quad(1+k p)(1+p) \\ & \text { RHS }=1+k p+p+k p^{2} \\ & \text { RHS } \ldots 1+k p+p \\ & \Rightarrow(1+p)^{k+1} \ldots 1+(k+1) p \end{aligned}$ Hence inequality is true when $n=k+1(* *)$ but true for $n=1$ so true for $n=2,3, \ldots$ by induction (***) (or true for all integers $n \ldots 1\left({ }^{* * *}\right)$)	B1 E1 M1 A1 A1 E1	6	and stating $1+p \ldots 0$ before multiplying both sides by $1+p$ or justifying why inequality remains ... and attempt to multiply out must have ... correct algebra and inequalities throughout must have $\left({ }^{*}\right),\left({ }^{* *}\right)$ and $\left({ }^{* * *}\right)$ and must have earned previous B1, M1, A1, A1 marks
	Total		6	
	Statement "true for $n=1$ may appear in conclusion such as "true for $n \ldots 1$ " allowing $\mathbf{B 1}$ to be earned May write $(1+p)^{k+1}=(1+p)^{k}(1+p) \ldots(1+k p)(1+p)$ with justification for \ldots for first $\mathbf{E 1}$ May earn final E1 even if first E1 has not been earned, provided other $\mathbf{4}$ marks are scored. If final statement is "true for all $n \ldots 1$ " do not award final E1			

\begin{tabular}{|c|c|c|c|c|}
\hline Q8 \& Solution \& Mark \& Total \& Comment \\
\hline (a) \& \begin{tabular}{l}
\[
\left.\begin{array}{l}
(\cos \theta+\mathrm{i} \sin \theta)^{4}=\cos 4 \theta+\mathrm{i} \sin 4 \theta \\
(\cos \theta-\mathrm{i} \sin \theta)^{4}=\cos 4 \theta-\mathrm{i} \sin 4 \theta \\
(\mathrm{c}+\mathrm{is})^{4}+(\mathrm{c}-\mathrm{is})^{4}=2 \cos 4 \theta
\end{array}\right]
\] \\
Divide throughout by \(\cos ^{4} \theta\)
\[
\begin{aligned}
\& (1+\mathrm{i} \tan \theta)^{4}+(1-\mathrm{i} \tan \theta)^{4}=\frac{2 \cos 4 \theta}{\cos ^{4} \theta} \\
\& \theta=\frac{\pi}{8} \Rightarrow \cos 4 \theta=0 \\
\& \Rightarrow z=\mathrm{i} \tan \frac{\pi}{8} \text { is root or satisfies equation } \\
\& \left((1+z)^{4}+(1-z)^{4}=0\right)
\end{aligned}
\]
\end{tabular} \& B1
M1
A1cso

E1 \& 3 \& AG - must see both sides equated penalise poor notation/brackets for A1cso or $\cos 4 \theta=0 \Rightarrow \theta=\frac{\pi}{8}$ AG be convinced: must have statement must mention $\mathrm{i} \tan \frac{\pi}{8}$ but may be listed with other 3 roots

\hline (b) \& other roots are $\mathrm{i} \tan \frac{3 \pi}{8}, \mathrm{i} \tan \frac{5 \pi}{8}, \mathrm{i} \tan \frac{7 \pi}{8}$, \& B1 \& 2 \&

\hline \multirow[t]{2}{*}{(c)(i)} \& $$
\begin{aligned}
& \alpha \beta \gamma \delta=\mathrm{i} \tan \frac{\pi}{8} \mathrm{i} \tan \frac{3 \pi}{8} \mathrm{i} \tan \frac{5 \pi}{8} \mathrm{i} \tan \frac{7 \pi}{8} \\
& \tan \frac{5 \pi}{8}=-\tan \frac{3 \pi}{8} \text { and } \tan \frac{7 \pi}{8}=-\tan \frac{\pi}{8} \\
& (1+z)^{4}+(1-z)^{4}=2 z^{4}+12 z^{2}+2
\end{aligned}
$$ \& M1

B1

B1 \& \& | product of their 4 roots |
| :--- |
| May earn this mark in part (c)(ii) if not earned here |
| or $z^{4}+6 z^{2}+1 \quad(=0)$ seen |

\hline \& $$
\alpha \beta \gamma \delta=1 \Rightarrow \tan ^{2} \frac{\pi}{8} \tan ^{2} \frac{3 \pi}{8}=1
$$ \& A1cso \& 4 \& must see i ${ }^{4}$ become 1 for final A1 cso

\hline \multirow[t]{4}{*}{(ii)} \& $$
\left(\sum \alpha\right)^{2}=\sum \alpha^{2}+2 \sum \alpha \beta
$$ \& M1 \& \&

\hline \& $$
\sum \alpha=0 \Rightarrow \sum \alpha^{2}=-2 \sum \alpha \beta=-12
$$ \& A1 \& \& using $z^{4}+6 z^{2}+1=0$

\hline \& $$
\mathrm{i}^{2}\left(\tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}+\tan ^{2} \frac{5 \pi}{8}+\tan ^{2} \frac{7 \pi}{8}\right)=-12
$$ \& A1 \& \& \[

\tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}+\tan ^{2} \frac{5 \pi}{8}+\tan ^{2} \frac{7 \pi}{8}=12 \mathbf{O E}
\]

\hline \& $$
\tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}=6
$$ \& A1cso \& 4 \& must see ${ }^{2}$ become -1 for final A1 cso

\hline \& Total \& \& 13 \&

\hline \multirow[t]{2}{*}{(a)} \& \multicolumn{4}{|l|}{May also earn M1 for both $(1+i \tan \theta)^{4}=\frac{(\cos \theta+i \sin \theta)^{4}}{\cos ^{4} \theta}$ or $\frac{\cos 4 \theta+i \sin 4 \theta}{\cos ^{4} \theta}$ and $(1-\mathrm{i} \tan \theta)^{4}=\frac{(\cos \theta-\mathrm{i} \sin \theta)^{4}}{\cos ^{4} \theta}$ or $\frac{\cos 4 \theta-\mathrm{i} \sin 4 \theta}{\cos ^{4} \theta}$ and $\mathbf{A 1}$ for completing the proof}

\hline \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{| Provided de Moivre's theorem is used, award M1 for showing either $\frac{2 \cos 4 \theta}{\cos ^{4} \theta}=2-12 \tan ^{2} \theta+2 \tan ^{4} \theta$ or $(1+\mathrm{i} \tan \theta)^{4}+(1-\mathrm{i} \tan \theta)^{4}=2-12 \tan ^{2} \theta+2 \tan ^{4} \theta$ and $\mathbf{A 1}$ for completing the proof Must use equations in z and roots of form $i \tan \phi$ to earn marks in part (c) Condone omission of all 4 i's for M1 but withhold A1cso unless $i^{4}=1$ is seen |
| :--- |
| see next page for alternative solution when candidates answer part (c) holistically by converting the quartic equation into a quadratic equation |}}

\hline \& \& \& \&

\hline
\end{tabular}

Q8	Alternative Solution	Mark	Total	Comment
(c)	Alternative part (c) Substitute $y=z^{2}$ $(1+z)^{4}+(1-z)^{4}=0$ becomes $(2)\left(y^{2}+6 y+1\right)=0$ $\tan \frac{5 \pi}{8}=-\tan \frac{3 \pi}{8} \text { and } \tan \frac{7 \pi}{8}=-\tan \frac{\pi}{8}$ Roots are $-\tan ^{2} \frac{\pi}{8}$ and $-\tan ^{2} \frac{3 \pi}{8}$ Sum of roots is -6 $\tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}=6$ Product of roots is 1 $\tan ^{2} \frac{\pi}{8} \tan ^{2} \frac{3 \pi}{8}=1$ Mark holistically out of 8 and then alloca part (c)(ii)	M1 A1 B1 E1 m1 A1 cso m1 A1 cso marks by	8 giving	explicitly stated and evidence that $\mathrm{i}^{2}=-1$ has been used FT their quadratic must have earned E1 must have earned E1 p to 4 marks in (c)(i) and the remainder in

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

