

A-LEVEL Mathematics

Further Pure 2 – MFP2 Mark scheme

6360 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment		
(a)	r+1 = A(r+2) + B or $1 = \frac{A(r+2)}{r+1} + \frac{B}{r+1}$	M1		OE with factorials removed		
	either $A = 1$ or $B = -1$	A1		correctly obtained		
	$\frac{1}{(r+2)r!} = \frac{1}{(r+1)!} - \frac{1}{(r+2)!}$	A1	3	allow if seen in part (b)		
(b)	$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \dots$	M1		use of their result from part (a) at least twice		
	$\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$ Sum = $\frac{1}{2} - \frac{1}{(n+2)!}$	A1	2	must simplify 2! and must have scored at least M1 A1 in part (a)		
	Total		5			
(a)	Alternative Method Substituting two values of <i>r</i> to obtain two correct equations in <i>A</i> and <i>B</i> with factorials evaluated correctly $r=0 \Rightarrow \frac{1}{2} = A + \frac{B}{2}$; $r=1 \Rightarrow \frac{1}{3} = \frac{A}{2} + \frac{B}{6}$ earns M1 then A1, A1 as in main scheme					
	NMS $\frac{1}{(r+1)!} - \frac{1}{(r+2)!}$ earns 3 marks .					
	However , using an <i>incorrect</i> expression resulting from poor algebra such as $1 = A(r+2)! + B(r+1)!$ with					
	candidate often fluking $A = 1$, $B = -1$ scores M0 ie zero marks which you should denote as FIW These candidates can then score a maximum of M1 in part (b).					
(b)	ISW for incorrect simplification after correct answer seen					

Q2	Solution	Mark	Total	Comment		
(2)						
(a)	у 🕇					
	1					
	$\longrightarrow x$					
	Graph roughly correct through O	M1		condone infinite gradient at <i>O</i> for M1		
	Correct behaviour as $x \to \pm \infty$ & grad at <i>O</i>	A1				
	Asymptotes have equations $y = 1 \& y = -1$	B1	3	must state equations		
	2 1 1 1			both correct ACF or correct squares of		
(b)	sech $x = \frac{2}{e^x + e^{-x}}$; $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	B1		these expressions seen		
	$2^{2} + (e^{x} - e^{-x})^{2}$					
	$(\operatorname{sech}^{2} x + \operatorname{tanh}^{2} x =) \frac{2^{2} + (e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$	M1		attempt to combine their squared terms with correct single denominator		
	$\operatorname{sech}^{2} x + \tanh^{2} x = \frac{e^{2x} + 2 + e^{-2x}}{e^{2x} + 2 + e^{-2x}} = 1$					
	$\operatorname{sech}^{-x} + \tanh^{-x} = \frac{1}{e^{2x} + 2 + e^{-2x}} = 1$	A1	3	AG valid proof convincingly shown to		
				equal 1 including LHS seen		
(c)	$6(1-\tanh^2 x) = 4 + \tanh x$	B1		correct use of identity from part (b)		
	$6 \tanh^2 x + \tanh x - 2 (=0)$	M1		forming quadratic in tanh x		
	$tanh x = \frac{1}{2}$, $tanh x = -\frac{2}{3}$	A1		obtained from correct quadratic		
	2 5			Source nom concer quadrance		
	$ \tanh x = k \Rightarrow x = \frac{1}{2}\ln\left(\frac{1+k}{1-k}\right) $	A1F		FT a value of k provided $ k < 1$		
	$x = \frac{1}{2}\ln 3$, $x = \frac{1}{2}\ln \frac{1}{5}$		_	both solutions correct and no others		
	$x = \frac{1}{2}$	A1	5	any equivalent form involving ln		
	Total		11			
(-)			1	· · · · · · · · · · · · · · · · · · ·		
(a)	Actual asymptotes need not be shown, but if asymptotes are drawn then curve should not cross them for A1. Gradient should not be infinite at <i>O</i> for A1.					
(1-)						
(b)						
	Denominator may be $e^{4x} + 4e^{2x} + 6 + e^{4x} + 4e^{-2x} + e^{-4x}$ etc for M1 and A1 $(e^{x} + e^{-x})^{2}$					
	Accept sech ² x + tanh ² x = $\frac{(e^{x} + e^{-x})^{2}}{(e^{x} + e^{-x})^{2}} = 1$ for A1					
	Alternative: $\left(\frac{1}{1+1}+\frac{\sinh^2 x}{2}\right) = \frac{1+\left(\frac{1}{2}(e^x-e^{-x})\right)^2}{2}$ scores B1 M1					

Accept
$$\operatorname{sech}^{2} x + \tanh^{2} x = \frac{\left(e^{x} + e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} = 1$$
 for A1
Alternative: $\left(\frac{1}{\cosh^{2} x} + \frac{\sinh^{2} x}{\cosh^{2} x}\right) = \frac{1 + \left(\frac{1}{2}(e^{x} - e^{-x})\right)^{2}}{\left(\frac{1}{2}(e^{x} + e^{-x})\right)^{2}}$ scores B1 M1
and then A1 for $\operatorname{sech}^{2} x + \tanh^{2} x = \frac{\frac{1}{4}e^{2x} + \frac{1}{4}e^{-2x} + \frac{1}{2}}{\frac{1}{4}e^{2x} + \frac{1}{2} + \frac{1}{4}e^{-2x}} = 1$, (all like terms combined in any order).

Q3	Solution	Mark	Total	Comment
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \frac{1}{t^2}$	B1		OE eg $\frac{t(2t) - (t^2 + 1)}{t^2}$ ACF
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2}{t}$	B1		
	$\left(\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \right) 1 - \frac{2}{t^2} + \frac{1}{t^4} + \frac{4}{t^2}$	M1		squaring and adding their expressions and attempting to multiply out
	$1 + \frac{2}{t^2} + \frac{1}{t^4} = \left(1 + \frac{1}{t^2}\right)^2$	A1	4	AG be convinced
(b)	$2\pi \int_{1}^{2} \left(2\ln t\right) \left(1 + \frac{1}{t^{2}}\right) \mathrm{d}t$	B1		must have 2π , limits and dt
		M1		integration by parts - clear attempt to
				integrate $1 + \frac{1}{t^2}$ and differentiate $2 \ln t$
	$(2\pi)\left\{ (2\ln t)\left(t-\frac{1}{t}\right) - \int \frac{2}{t}\left(t-\frac{1}{t}\right)(\mathrm{d}t) \right\}$	A1		correct (may omit limits, 2π and dt)
	$2\pi \left[\left(2\ln t\right) \left(t - \frac{1}{t}\right) - \left(2t + \frac{2}{t}\right) \right]$	A1		correct including 2π (no limits required)
	$= 2\pi(3\ln 2 - 5 + 4) = \pi(6\ln 2 - 2)$	A1	5	
	Total		9	
(b)	Must see $(2\pi)\left\{2t\ln t - \int 2(dt) - \left(2t^{-1}\ln t - \int 2t^{-2}(dt)\right)\right\}$ (may omit limits, 2π and dt) for first A1			
	and $2\pi \left[(2t \ln t - 2t) - (2t^{-1} \ln t + 2t^{-1}) \right]$ for second A1 Condone poor use of brackets if later recovered.			

Q4	Solution	Mark	Total	Comment	
(a)	$f(k+1) = 2^{4k+7} + 3^{3k+4}$	M1			
	convincingly showing $2^{4k+7} = 16 \times 2^{4k+3}$ f (k + 1) - 16f (k)	E1		must see $16 = 2^4$ OE	
	$= (81 - 16 \times 3) \times 3^{3k}$ $= 33 \times 3^{3k}$	A1	3		
(b)	f(1) = 209 therefore $f(1)$ is a multiple of 11	B1		$f(1) = 209 = 11 \times 19 \text{ or } 209 \div 11 = 19 \text{ etc}$ therefore true when $n=1$	
	Assume $f(k)$ is a multiple of 11 (*)				
	$f(k+1) = 16f(k) + 33 \times 3^{3k}$	M1		attempt at $f(k+1) =$ using their result from part (a)	
	= 11M + 11N = 11(M + N) Therefore f (k + 1) is a multiple of 11	A1		where <i>M</i> and <i>N</i> are integers	
	Since $f(1)$ is multiple of 11 then $f(2)$, $f(3)$, are multiples of 11 by induction (or is a multiple of 11 for all integers $n \ge 1$)	E1	4	must earn previous 3 marks and have (*) before E1 can be awarded	
	Total		7		
(a)	It is possible to score M1 E0 A1				
(b)	Withhold E1 for conclusion such as "a multiple	e of 11 for	all $n \ge 1$	" or poor notation, etc	

Q5	Solution	Mark	Total	Comment
(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ignore the line <i>OP</i> drawn in full or circles drawn as part of construction for locus <i>L</i> .
	Straight line Through midpoint of <i>OP</i> , <i>P</i> correct Perpendicular to <i>OP</i> , <i>P</i> correct	M1 A1 A1	3	P represents 2 – 4i
(b)(i)	$(x-2)^{2} + (y+4)^{2} = x^{2} + y^{2}$ 2y - x + 5 = 0 A(5,0) & B(0,-2.5) $C\left(\frac{5}{2}, -\frac{5}{4}\right) \implies \text{complex num} = \frac{5}{2} - \frac{5}{4}i$	M1 A1 A1 A1	4	may have $5 + 0i$ and $0 - 2.5i$
(ii)	<i>either</i> $\alpha = \frac{5}{2} - \frac{5}{4}i$ <i>or</i> $k = \frac{5\sqrt{5}}{4}$	M1		allow statement with correct value for centre or radius of circle
	$\left z - \frac{5}{2} + \frac{5}{4}i\right = \frac{5\sqrt{5}}{4}$	A1	2	must have exact surd form
	Total		9	
(a)	Withhold the final A1 (if 3 marks earned) if the straight line does not go beyond the $Re(z)$ axis and negative $Im(z)$ axis. The two A1 marks can be awarded independently.			
(b)(i)	Alternative 1: grad $OP = -2 \Rightarrow$ grad $L = 0.5$ M1; $y + 2 = \frac{1}{2}(x-1)$ OE A1 then A1, A1 as per scheme Alternative 2: substituting $z = x$ (or a) then $z = iy$ (or ib) into given locus equation Both $(x-2)^2 + 4^2 = x^2$ and $2^2 + (y+4)^2 = y^2$ M1; $4 - 4x + 16 = 0$ and $4 + 8y + 16 = 0$ OE for A1 then A1, A1 as per scheme.			

Q6	Solution	Mark	Total	Comment
(a)	$\sqrt{5+4x-x^2} + \frac{(x-2)\frac{1}{2}(4-2x)}{\sqrt{5+4x-x^2}}$	M1 A1		product rule (condone one error) correct unsimplified
	(+) $\frac{9 \times \frac{1}{3}}{\sqrt{1 - \left(\frac{x - 2}{3}\right)^2}}$	B1		or $\frac{9}{\sqrt{3^2 - (x-2)^2}}$ correct unsimplified
	$\frac{5+4x-x^2}{\sqrt{5+4x-x^2}}$	A1		last two terms above combined correctly
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\sqrt{5+4x-x^2}$	A1cso	5	<i>k</i> = 2
(b)	$\frac{1}{k} \left\{ (x-2)\sqrt{5+4x-x^2} + 9\sin^{-1}\left(\frac{x-2}{3}\right) \right\}$	M1		ft "their" k
	$\frac{1}{"their" k} \left[\frac{3}{2} \sqrt{\frac{27}{4}} + 9\sin^{-1}\frac{1}{2} \right]$	m1		correct sub of limits (simplified at least this far)
	$=\frac{9}{8}\sqrt{3}+\frac{3}{4}\pi$	A1 cso	3	must have earned 5 marks in part(a) to be awarded this mark
	Total		8	
(a)	Second A1 ; may combine all three terms co	prrectly an	d obtain	$\frac{10 + 8x - 2x^2}{\sqrt{5 + 4x - x^2}}$

Q7	Solution	Mark	Total	Comment
(a)	$\alpha\beta + \beta\gamma + \gamma\alpha = 0$	B 1		
	$\alpha\beta\gamma = -\frac{4}{27}$	B 1	2	
	1			
(b)(i)	$\alpha\beta + \alpha\beta + \beta^2 = 0$; $\alpha\beta^2 = -\frac{4}{27}$	B1		May use γ instead of β throughout (b)(i)
		M1		Clear attempt to eliminate either α or β
	$\alpha^3 = -\frac{1}{27}$ or $\beta^3 = \frac{8}{27}$	A1		from "their" equations correct
	either $\alpha = -\frac{1}{3}$ or $\beta = \frac{2}{3}$	4.1		
	5 5	A1		
	$\alpha = -\frac{1}{3}$, $\beta = \frac{2}{3}$, $\gamma = \frac{2}{3}$	A1	5	all 3 roots clearly stated
(ii)	$\left(\sum \alpha = 1 = -\frac{k}{27} \Rightarrow \right) k = -27$	B1	1	or substituting correct root into equation
		DI	1	or substituting correct root into equation
(c)(i)	$\alpha^2 = -2i$	B1	-	
	$\alpha^3 = -2 - 2i$	B 1	2	
(ii)	27(-2-2i) - 2ik + 4 = 0	M1		correctly substituting "their" $\alpha^2 = -2i$
	k = -27 + 25i	A1	2	and "their" $\alpha^3 = -2 - 2i$
(N	1 1			
(d)	$y = \frac{1}{z} + 1 \Longrightarrow z = \frac{1}{y - 1}$	B1		may use any letter instead of y
	$\frac{27}{(y-1)^3} - \frac{12}{(y-1)^2} + 4 = 0$	M1		sub their z into cubic equation
	$(y-1)^3$ $(y-1)^2$ 27-12(y-1)+4(y-1)^3 = 0	A1		removing denominators correctly
	27 - 12(y - 1) + 4(y - 1) = 0 $27 - 12y + 12 + 4(y^3 - 3y^2 + 3y - 1) = 0$	A1		correct and $(y-1)^3$ expanded correctly
	$4y^3 - 12y^2 + 35 = 0$	A1	5	
	$\alpha R + R \alpha + \alpha \alpha$			
	Alternative: $\sum \alpha' = 3 + \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = 3$	(B1)		sum of new roots $=3$
	$\sum \alpha' \beta' = 3 + \frac{2(\alpha\beta + \beta\gamma + \gamma\alpha) + \alpha + \beta + \gamma}{\alpha\beta\gamma}$	(M1)		M1 for either of the other two formulae
	$= 0 \qquad $	(A1)		correct in terms of $\alpha\beta\gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha + \beta + \gamma$
	$\prod = 1 + \frac{\alpha\beta + \beta\gamma + \gamma\alpha + 1 + \alpha + \beta + \gamma}{\alpha\beta\gamma}$			
	$=\frac{-35}{4}$	(A1)		
	$4y^3 - 12y^2 + 35 = 0$	(A1)	(5)	may use any letter instead of y
	Total		17	
		•		

Q8	Solution	Mark	Total	Comment	
(a)(i)	$\left(\omega^{5}=\right)\cos 2\pi+i\sin 2\pi=1$				
	So ω is a root of $z^5 = 1$	B 1	1	must have conclusion plus verification that $\omega^5 = 1$	
				$\omega^* = 1$	
(ii)	$\omega^2, \omega^3, \omega^4.$	B1	1	OE powers mod 5 (must not include 1)	
(b)(i)	$1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} = \frac{1 - \omega^{5}}{1 - \omega} = 0$	D1	1	or clear statement that sum of roots (of	
		B 1	1	$z^5 - 1 = 0$) is zero	
(ii)	$\left(\omega + \frac{1}{\omega}\right)^2 + \left(\omega + \frac{1}{\omega}\right) - 1$				
	$= \omega^{2} + 2 + \frac{1}{\omega^{2}} + \omega + \frac{1}{\omega} - 1$ $= \frac{1 + \omega + \omega^{2} + \omega^{3} + \omega^{4}}{\omega^{2}} = 0$	M1		correct expansion	
	$=\frac{1+\omega+\omega^2+\omega^3+\omega^4}{\omega^2}=0$	A1	2	AG correctly shown to $= 0$	
	ω			do not allow simply multiplying by ω^2	
(-)					
(c)	$\frac{1}{\omega} = \cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}$	M1			
	$\Rightarrow \omega + \frac{1}{\omega} = 2\cos\frac{2\pi}{5}$	A1		SC1 if result merely stated	
	Solving quadratic $\left(\omega + \frac{1}{\omega} =\right) \frac{-1 \pm \sqrt{5}}{2}$	M1		must see both values	
	Rejecting negative root since $\cos \frac{2\pi}{5} > 0$			must see this line for final A1	
	Hence $\cos\frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$	A1	4		
				It is possible to score SC1 M1 A1	
	Total		9		
(b)(ii)	May replace $\frac{1}{\omega^2}$ by ω^3 and $\frac{1}{\omega}$ by ω^4 and/or 1 by ω^5 in valid proof.				
	Alternative: $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0 \implies \frac{1}{\omega^2} + \frac{1}{\omega} + 1 + \omega + \omega^2 = 0$ M1				
	$\left(\omega + \frac{1}{\omega}\right)^2 - 2 + \left(\omega + \frac{1}{\omega}\right) + 1 = 0 \implies \left(\omega + \frac{1}{\omega}\right)^2 + \left(\omega + \frac{1}{\omega}\right) - 1 = 0 \mathbf{A1}$				
L					