

A-LEVEL Mathematics

Further Pure 2 – MFP2 Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$r = 9$ $\theta = -\frac{\pi}{2}$	B1 B1		condone -1.57 here only
(b)	$r = \sqrt{3}$	B1 √	2	$-9i = 9e^{-i\frac{\pi}{2}}$
	$(their \theta)/4$ $5\pi \pi 3\pi 7\pi$	M1		follow through $(their r)^{\frac{1}{4}}$; accept $9^{\frac{1}{4}}$ etc generous
	$\theta = -\frac{5\pi}{8}, -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}$	A1 A1		two angles correct in correct interval exactly four angles correct mod 2π
	$\sqrt{3} e^{-\frac{i5\pi}{8}}, \sqrt{3} e^{-\frac{i\pi}{8}}, \sqrt{3} e^{-\frac{i3\pi}{8}}, \sqrt{3} e^{-\frac{i3\pi}{8}}$	A1	5	four correct roots in correct interval and in given form; accept $3^{\frac{1}{2}}$ for $\sqrt{3}$
	Total		7	
1(a)	Accept correct values of <i>r</i> and θ for full marks without candidates actually writing $9e^{-i\frac{\pi}{2}}$. Do not accept angles outside the required interval. Example " $\theta = -\frac{\pi}{2}$ or $\theta = \frac{3\pi}{2}$ " scores B0			
(b)	Example $\theta = \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$ scores M1 A1 A1			
	Example $\sqrt{3} e^{-\frac{i\pi}{8} + \frac{ik\pi}{2}}$ scores B1 M1 then $k = -1, 0, 1, 2$ scores A1 A1 with final A1 only earned when four roots are written in given form			

Q	Solution	Mark	Total	Comment
2(a)	Straight line	M1		
-(~)				
	Half line from 2 on Im axis	A1		not vertical or horizontal
	Making approx. 30° to positive Im axis			
	& 60° to negative Re axis	A1	3	
(b)(i)	Circle with centre on 'their' L	M1		
	Circle correct and touching $\text{Im } z = 2$	A1	2	lowest point of circle at approx 2
(b)(ii)	$d = 3\tan\frac{\pi}{6}$	M1		any correct expression for distance
				or $\frac{b-2}{a} = -\sqrt{3}$ for M1
	$a = -\sqrt{3}$	A1		condone -1.73 or better
	<i>b</i> = 5	B 1	3	centre is $-\sqrt{3}+5i$
	Total		8	centre is $-\sqrt{3}+51$
(a)	The two A1 marks are independent.			
(b) (i)	If candidate draws a horizontal line at Im z = touch this line. Allow freehand circle where centre is intend quadrant or drawing of circle is very poor. Award A0 if candidate has not scored full m	led to be o	on "their"	

Q	Solution	Mark	Total	Comment
3 (a)	$k^2 + 7k + 14$	B1	1	
(b)	When $n = 1$ LHS = $1 \times 2 \times 1 = 2$ RHS = $16 - 14 = 2$ Therefore true for $n = 1$	B1		
	Assume formula is true for $n=k$ (*) Add (k+1)th term (to both sides) $\sum_{r=1}^{k+1} r(r+1) \left(\frac{1}{2}\right)^{r-1}$	M1		(<i>k</i> +1)th term must be correct
	$\sum_{r=1}^{k} -(k^{2}+5k+8)(\frac{1}{2})^{k-1} +(k+1)(k+2)(\frac{1}{2})^{k}$	A1		A0 if only considering RHS
	$=16 - \left(\frac{1}{2}\right)^{k} \left(2k^{2} + 10k + 16 - k^{2} - 3k - 2\right)$ $=16 - \left(\frac{1}{2}\right)^{k} \left(k^{2} + 7k + 14\right)$	A1		
	$=16 - \left(\left(k+1\right)^2 + 5\left(k+1\right) + 8 \right) \left(\frac{1}{2}\right)^k$	A1		from part (a)
	Hence formula is true when $n = k+1$ (**) but true for $n = 1$ so true for $n = 2, 3,$ by induction (***)	E1	6	must have (*), (**) and (***) and must have earned previous 5 marks
	Total		7	
(b)	For B1 , accept " $n=1$ RHS=LHS=2" but must mention here or later that the result is "true when $n=1$ "			
	Alternative to (***) is "therefore true for all positive integers <i>n</i> " etc However, "true for all $n \ge 1$ " is incorrect and scores E0			
	May define $P(k)$ as the "proposition that the formula is true when $n = k$ " and earn full marks. However, if $P(k)$ is not defined then allow B1 for showing $P(1)$ is true but withhold E1 mark.			

4 (a) (i) $\alpha + \beta + \gamma = -2$ $\alpha\beta + \beta\gamma + \gamma\alpha = 3$ (ii) $\alpha^2 + \beta^2 + \gamma^2$ $= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ = 4 - 6 = -2 (b) (i) $\sum (\alpha + \beta)(\beta + \gamma) = \sum \alpha^2 + 3\sum \alpha\beta$ = -2 + 9 = 7 (ii) $\alpha\beta\gamma = 4$ (iii) $\alpha\beta\gamma = 4$ $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ $= \sum \alpha \sum \alpha\beta - \alpha\beta\gamma$ = -6 - 4 = -10 (c) Sum of new roots $= 2\sum \alpha = -4$ $z^3 \pm 4z^2 + \pi their 7^* z^{-n} their -10^n (=0)$ New equation $z^3 + 4z^2 + 7z + 10 = 0$ All (a) Accept $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha\beta$ cto for MI (b) (ii) Accept $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha\beta$ cto for MI (c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0" Hard a correct or an or	Q	Solution	Mark	Total	Comment
$\begin{vmatrix} \alpha + \beta + \gamma \rangle^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \\ = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \\ = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \\ = (\alpha + \beta)(\beta + \gamma) = \sum \alpha^{2} + 3\sum \alpha\beta \\ = -2 + 9 \\ = 7 \\ \end{vmatrix}$ $\begin{vmatrix} MI \\ m$		$\alpha + \beta + \gamma = -2$	B1		
(i) $2 = 2 + 9$ $= 7$ (i) $2 = 2 + 9$ $= 7$ (ii) $2 = 2 + 9$ $= 7$ (iii) $\alpha \beta \gamma = 4$ $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ $= \sum \alpha \sum \alpha \beta - \alpha \beta \gamma$ $= -6 - 4$ $= -10$ (c) Sum of new roots $= 2\sum \alpha = -4$ $= -10$ (c) NI here is a stantian then obtain results for part (b) (b) (ii) If B1 not earned, award m1 for using $\alpha\beta\gamma = \pm 4$. (c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0"	(ii)	$= (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$		2	AG be convinced; must see $4-6$ A0 if $\alpha + \beta + \gamma$ or $\alpha\beta + \beta\gamma + \gamma\alpha$ not
(c) Sum of new roots $=2\sum \alpha = -4$ $z^{3} \pm 4z^{2} + "their7" z - "their -10" (=0)$ New equation $z^{3} + 4z^{2} + 7z + 10 = 0$ (c) Total 14 (c) Total 14 (a)(ii) Accept $(\sum \alpha)^{2} = \sum \alpha^{2} + 2\sum \alpha \beta$ etc for M1 (b)(ii) If B1 not earned, award m1 for using $\alpha \beta \gamma = \pm 4$. (c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0"	(b) (i)	= -2 + 9	m1	3	
$= \sum \alpha \sum \alpha \beta - \alpha \beta \gamma$ $= -6 - 4$ $= -10$ $A1$ MI $= -8 - 4 \sum \alpha - 2 \sum \alpha \beta - \alpha \beta \gamma$ $= -8 - 4 \sum \alpha - 2 \sum \alpha \beta - \alpha \beta \gamma$ Sub their $\sum \alpha, \sum \alpha \beta \& \alpha \beta \gamma$ $= -8 - 4 \sum \alpha - 2 \sum \alpha \beta - \alpha \beta \gamma$ Sub their $\sum \alpha, \sum \alpha \beta \& \alpha \beta \gamma$ $x^{3} \pm 4z^{2} + "their7" z - "their - 10" (=0)$ New equation $z^{3} + 4z^{2} + 7z + 10 = 0$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	(ii)	$\alpha\beta\gamma = 4$	B1		PI when earning m1 later
$= -10$ (c) Sum of new roots $= 2\sum \alpha = -4$ $z^3 \pm 4z^2 + "their7" z - "their -10" (=0)$ New equation $z^3 + 4z^2 + 7z + 10 = 0$ (d) New equation $z^3 + 4z^2 + 7z + 10 = 0$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$			M1		
$\begin{array}{ c c c c c } \hline \mathbf{x} & \mathbf{y} & \mathbf{y}$				4	Sub their $\sum \alpha$, $\sum \alpha \beta \& \alpha \beta \gamma$
New equation $z^3 + 4z^2 + 7z + 10 = 0$ New equation $z^3 + 4z^2 + 7z + 10 = 0$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	(c)	Sum of new roots = $2\sum \alpha = -4$	B1		<i>or</i> NMS coefficient of z^2 written as +4
Alternative $y = -2 - z$ B1 $(-2 - y)^3 + 2(-2 - y)^2 + 3(-2 - y) - 4 = 0$ M1 $y^3 + 4y^2 + 7y + 10 = 0$ A1 NB candidate may do this first and then obtain results for part (b) (a)(ii) Accept $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$ etc for M1 (b)(ii) If B1 not earned, award m1 for using $\alpha \beta \gamma = \pm 4$. (c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0"		$z^{3} \pm 4z^{2} + "their7" z - "their - 10" (=0)$	M1		correct sub of their results from part (b)
(a)(ii) Accept $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$ etc for M1 (b)(ii) If B1 not earned, award m1 for using $\alpha \beta \gamma = \pm 4$. (c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0"		New equation $z^3 + 4z^2 + 7z + 10 = 0$	A1	3	$(-2 - y)^3 + 2(-2 - y)^2 + 3(-2 - y) - 4 = 0$ M1 $y^3 + 4y^2 + 7y + 10 = 0$ A1 NB candidate may do this first and then
(b)(ii) If B1 not earned, award m1 for using $\alpha\beta\gamma = \pm 4$. (c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0"		Total		14	
(c) For M1 the signs of coefficients must be correct FT their results from (b) but condone missing "= 0"	(a)(ii)	Accept $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$ etc for M1			
	(b)(ii)	If B1 not earned, award m1 for using $\alpha\beta\gamma = \pm 4$.			
	(c)				

Q	Solution	Mark	Total	Comment	
5(a)	$\left(e^{\theta}-e^{-\theta}\right)^3 = e^{3\theta}-3e^{\theta}+3e^{-\theta}-e^{-3\theta}$ OE	B1		correct expansion; terms need not be combined	
	$4\sinh^{3}\theta + 3\sinh\theta = \frac{4}{8}\left(e^{3\theta} - 3e^{\theta} + 3e^{-\theta} - e^{-3\theta}\right) + \frac{1}{2}\left(3e^{\theta} - 3e^{-\theta}\right)$. M1		correct expression for $\sinh \theta$ and attempt to expand $(e^{\theta} - e^{-\theta})^3$	
	$=\frac{1}{2}\left(e^{3\theta}-e^{-3\theta}\right)=\sinh 3\theta$	A1	3	AG identity proved	
(b)	$16\sinh^{3}\theta + 12\sinh\theta - 3 = 0$ $\Rightarrow 4\sinh 3\theta - 3 = 0$	M1		attempt to use previous result	
	$\sinh 3\theta = \frac{3}{4}$	A1		correct in form of sinh ⁻¹ for "their" ³	
	$(3\theta =)\ln\left(\frac{3}{4} + \sqrt{\frac{9}{16} + 1}\right)$ $\theta = \frac{1}{2}\ln 2$	m1		correct ln form of sinh ⁻¹ for "their" $\frac{3}{4}$	
	$0 - \frac{1}{3}$ m ²	A1	4		
(c)	$x = \sinh \theta = \frac{1}{2} \left(2^{\frac{1}{3}} - 2^{-\frac{1}{3}} \right)$	M1		correctly substituting their expression for θ into sinh θ removing any ln terms	
	$2^{-\frac{2}{3}} - 2^{-\frac{4}{3}}$	A1	2		
	Total		9		
(a)	For M1, must attempt to expand $(e^{\theta} - e^{-\theta})^3$ with at least 3 terms and attempt to add expressions for two terms on LHS. For A1, must see both sides of identity connected with at least trailing equal signs.				
(b)	Withhold final A1 if answer is given as $x = \frac{1}{3} \ln 2$.				
	Alternative: $2e^{3\theta} - 2e^{-3\theta} - 3 = 0 \Rightarrow 2e^{6\theta} - 3e^{3\theta} - 2 = 0$ so $(e^{3\theta} - 2)(2e^{3\theta} + 1) = 0$				
	scores M1 for $e^{k\theta} = p$ (quite generous) A1 for $e^{3\theta} = 2$ (and perhaps $e^{3\theta} = -0.5$)				
	then m1 for correct ft from $e^{k\theta} = p \Rightarrow k\theta = \ln p$ and final A1 for $\theta = \frac{1}{3} \ln 2$ and no other solutions				

Q	Solution	Mark	Total	Comment	
	301011011	INIAI K	Totai	Comment	
6(a)(i)	$z^n = \cos n\theta + \mathrm{i}\sin n\theta$	M1			
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta)$	E1		or $\frac{1}{\cos n\theta + i \sin n\theta} \times \frac{\cos n\theta - i \sin n\theta}{\cos n\theta - i \sin n\theta} = \dots$	
	$=\cos n\theta - i\sin n\theta$			$\cos n\theta + i\sin n\theta - \cos n\theta - i\sin n\theta$ shown – not just stated	
	$z^n - \frac{1}{z^n} = 2i\sin n\theta$	A1	3	AG	
(ii)	$\left(z^n + \frac{1}{z^n}\right) = 2\cos n\theta$	B1	1		
(b)(i)	$\left(z - \frac{1}{z}\right)^{2} \left(z + \frac{1}{z}\right)^{2} = z^{4} - 2 + \frac{1}{z^{4}}$	B1	1	<i>or</i> $z^4 - 2 + z^{-4}$	
(ii)	$(2i\sin\theta)^2 (2\cos\theta)^2 = 2\cos 4\theta - 2$ $-16\sin^2\theta \cos^2\theta = 2\cos 4\theta - 2$	M1		using previous results	
	$8\sin^2\theta\cos^2\theta = 1 - \cos 4\theta$	A1cso	2		
(c)	$x = 2\sin\theta \Longrightarrow dx = 2\cos\theta d\theta$	M1		$x = 2\sin\theta \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = k\cos\theta$	
	$\int x^2 \sqrt{4 - x^2} \mathrm{d}x = \int 16 \sin^2 \theta \cos^2 \theta \mathrm{d}\theta$	A1			
	$= \int (2 - 2\cos 4\theta) (\mathrm{d}\theta)$	m1		correct or FT their (b)(ii) result	
	$=2\theta-\frac{1}{2}\sin 4\theta$	B1 √		FT integrand of form $k(1 - \cos 4\theta)$	
	$= \left[\pi - \frac{1}{2}\sin 2\pi\right] - \left[\frac{\pi}{3} - \frac{1}{2}\sin \frac{2\pi}{3}\right]$			$x=1 \Rightarrow \theta = \frac{\pi}{6}; x=2 \Rightarrow \theta = \frac{\pi}{2};$	
	$=\frac{2\pi}{3}+\frac{\sqrt{3}}{4}$	A1cso	5		
	Total		12		
(a)(i)	May score M1 E0 A1 if $z^{-n} = \cos n\theta - i \sin n\theta$ merely quoted and not proved. Condone poor use of brackets for M1 but not for A1 .				
(b)(ii)	For M1, must use $2i \sin \theta$ and "their" $2\cos \theta$ on LHS but condone poor use of brackets etc when squaring.				
(c)	For A1cso, must simplify $\sin^{-1}1$ correctly in terms of π . Allow first A1 for missing $d\theta$ or incorrect limits used/seen, but withhold final A1cso.				

Q	Solution	Mark	Total	Comment	
	Condion	main			
7 (a)	$\frac{d}{dx}\left(\frac{1+x}{1-x}\right) = \frac{1-x+1+x}{(1-x)^2} = \frac{2}{(1-x)^2}$	B1		ACF	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+u^2}$	M1		where $u = \frac{1+x}{1-x}$	
	$\times \frac{2}{(1-x)^2}$	A1		correct unsimplified	
	$=\frac{2}{(1-x)^2+(1+x)^2}=\frac{1}{1+x^2}$	A1	4	AG be convinced	
(b)	either $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ or $\int \frac{1}{1+x^2} dx = \tan^{-1}x$ (+c)	B1			
	$\Rightarrow \tan^{-1}\left(\frac{1+x}{1-x}\right) = \tan^{-1}x + C$	M1			
	Putting $x = 0$ gives $C = \tan^{-1} 1 = \frac{\pi}{4}$				
	$\Rightarrow \tan^{-1}\left(\frac{1+x}{1-x}\right) - \tan^{-1}x = \frac{\pi}{4}$	A1	3	AG	
	Total		7		
(a)	Alternative $\tan y = \frac{1+x}{1-x}$				
	$\sec^2 y \frac{d y}{d x}$ M1 $= \frac{2}{(1-x)^2}$ B1				
	$\sec^2 y \frac{dy}{dx} \mathbf{M1} = \frac{2}{(1-x)^2} \mathbf{B1}$ $\left(1 + \left(\frac{1+x}{1-x}\right)^2\right) \frac{dy}{dx} \mathbf{A1} \qquad \text{with final } \mathbf{A1} \text{ for proving given result}$				
(b)	Must see $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ within attempt	ot at part (b) to awa	rd B1	
L					

Q	Solution	Mark	Total	Comment
<u>v</u>	301011011	iviai K	TUIAI	Comment
8(a)	$y = 2(x-1)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = (x-1)^{-\frac{1}{2}}$	B1		
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{1}{x - 1}$	M1		ft their $\frac{dy}{dx}$
	$(s=)\int_{(2)}^{(9)}\sqrt{1+\left(\frac{dy}{dx}\right)^2} (dx) (=)$			$s = \int_2^9 \sqrt{1 + \frac{1}{x - 1}} \mathrm{d}x$
	$\int_{2}^{9} \sqrt{\frac{x}{x-1}} \mathrm{d}x$	A1	3	(be convinced) AG (must have limits & dx on final line)
(b)(i)	$\cosh^{-1} 3 = \ln\left(3 + \sqrt{8}\right)$	M1		
	$(1+\sqrt{2})^2 = 3+2\sqrt{2} = 3+\sqrt{8}$			need to see this line OE
	$\cosh^{-1} 3 = \ln(1 + \sqrt{2})^2 = 2\ln(1 + \sqrt{2})$	A1	2	AG (be convinced)
(ii)	$x = \cosh^2 \theta \Longrightarrow dx = 2\cosh\theta\sinh\thetad\theta$	M1		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = k\cosh\theta\sinh\theta \mathbf{OE}$
	$(s =) \int \frac{\cosh \theta}{\sinh \theta} 2 \cosh \theta \sinh \theta \mathrm{d}\theta$	A1		including $d\theta$ on this or later line
	$2\cosh^2\theta = 1 + \cosh 2\theta$ OE	B1		double angle formula or $\frac{1}{2} (e^{2\theta} + 2 + e^{-2\theta})$
	$(s =) \theta + \frac{1}{2} \sinh 2\theta$	A1		or $\left(\frac{1}{4}e^{2\theta} + \theta - \frac{1}{4}e^{-2\theta}\right)$
	$\cosh^{-1}3 + \frac{1}{2}\sinh(2\cosh^{-1}3)$	m1		correct use of correct limits
	$-\cosh^{-1}\sqrt{2} - \frac{1}{2}\sinh(2\cosh^{-1}\sqrt{2}) \int (s = 2\ln(1 + \sqrt{2}) - \ln(1 + \sqrt{2}) + 6\sqrt{2} - \sqrt{2}$			must see this line OE
	$= 5\sqrt{2} + \ln\left(1 + \sqrt{2}\right)$	A1	6	partial AG (be convinced)
	Total		11	
	TOTAL		75	
(b)(i)	SC1 for $\cosh\left(2\ln\left(1+\sqrt{2}\right)\right) = \frac{1}{2}\left(\left(1+\sqrt{2}\right)^{2} + \left(1+\sqrt{2}\right)^{-2}\right) = \frac{1}{2}\left(3+2\sqrt{2}+3-2\sqrt{2}\right) = 3 \Longrightarrow \cosh^{-1}3 = 2\ln\left(1+\sqrt{2}\right)$			
(ii)	Another possible correct form for m1 is $2\ln(1+\sqrt{2}) - \ln(1+\sqrt{2}) + \frac{1}{2}\sinh(4\ln(1+\sqrt{2})) - \frac{1}{2}\sinh(2\ln(1+\sqrt{2}))$			