A-LEVEL Mathematics

Further Pure 2 - MFP2
Mark scheme

6360
June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline 1 (a) \& \[
\begin{aligned}
\& r=9 \\
\& \qquad \begin{array}{l}
\theta=-\frac{\pi}{2} \\
r=\sqrt{3} \\
\quad \theta=-\frac{5 \pi}{8},-\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{7 \pi}{8} \\
\sqrt{3} \mathrm{e}^{-\frac{\mathrm{i} 5 \pi}{8}}, \sqrt{3} \mathrm{e}^{-\frac{\mathrm{i} \pi}{8}}, \sqrt{3} \mathrm{e}^{\frac{\mathrm{i} 3 \pi}{8}}, \sqrt{3} \mathrm{e}^{\frac{\mathrm{i} 7 \pi}{8}}
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \(\sqrt{ }\) \\
M1 \\
A1 \\
A1 \\
A1
\end{tabular} \& 2

5 \& | condone $-1.57 \ldots$ here only $-9 \mathrm{i}=9 \mathrm{e}^{-\mathrm{i} \frac{\pi}{2}}$ |
| :--- |
| follow through (their $r)^{\frac{1}{4}}$; accept $9^{\frac{1}{4}}$ etc generous |
| two angles correct in correct interval exactly four angles correct $\bmod 2 \pi$ |
| four correct roots in correct interval and in given form; accept $3^{\frac{1}{2}}$ for $\sqrt{3}$ |

\hline \& Total \& \& 7 \&

\hline 1(a)

(b) \& \multicolumn{4}{|l|}{| Accept correct values of r and θ for full marks without candidates actually writing $9 \mathrm{e}^{-\mathrm{i} \frac{\pi}{2}}$. Do not accept angles outside the required interval. |
| :--- |
| Example " $\theta=-\frac{\pi}{2}$ or $\theta=\frac{3 \pi}{2}$ " scores $\mathbf{B 0}$ |
| Condone $r=1.73 \ldots$ for $\mathbf{B 1}$ only. Do not follow through a negative value of r for $\mathbf{B} 1 \sqrt{ } \sqrt{\text {. }}$ |
| Example $\theta=\frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{15 \pi}{8}$ scores M1 A1 A1 |
| Example $\sqrt{3} \mathrm{e}^{-\frac{\mathrm{i} \pi}{8}+\mathrm{i} \frac{\mathrm{i} \tau}{2}}$ scores B1 M1 then $k=-1,0,1,2$ scores A1 A1 with final A1 only earned when four roots are written in given form |}

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
5(a)	$\left.\left[\begin{array}{c} \left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{3}=\mathrm{e}^{3 \theta}-3 \mathrm{e}^{\theta}+3 \mathrm{e}^{-\theta}-\mathrm{e}^{-3 \theta} \text { OE } \\ 4 \sinh { }^{3} \theta+3 \sinh \theta= \\ \frac{4}{8}\left(\mathrm{e}^{3 \theta}-3 \mathrm{e}^{\theta}+3 \mathrm{e}^{-\theta}-\mathrm{e}^{-3 \theta}\right)+\frac{1}{2}\left(3 \mathrm{e}^{\theta}-3 \mathrm{e}^{-\theta}\right) \end{array}\right]\right]$	B1 M1 A1	3	correct expansion; terms need not be combined correct expression for $\sinh \theta$ and attempt to expand $\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{3}$ AG identity proved
(b)	$\begin{aligned} & 16 \sinh ^{3} \theta+12 \sinh \theta-3=0 \\ & \quad \Rightarrow 4 \sinh 3 \theta-3=0 \end{aligned}$	M1		attempt to use previous result
	$\sinh 3 \theta=\frac{3}{4}$	A1		
	$(3 \theta=) \ln \left(\frac{3}{4}+\sqrt{\frac{9}{16}+1}\right)$	m1		correct \ln form of $\sinh ^{-1}$ for "their" $\frac{3}{4}$
	$\theta=\frac{1}{3} \ln 2$	A1	4	
(c)	$x=\sinh \theta=\frac{1}{2}\left(2^{\frac{1}{3}}-2^{-\frac{1}{3}}\right)$	M1		correctly substituting their expression for θ into $\sinh \theta$ removing any ln terms
	$2^{-\frac{2}{3}}-2^{-\frac{4}{3}}$		2	
	Total		9	
(a)	For M1, must attempt to expand $\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{3}$ with at least 3 terms and attempt to add expressions for two terms on LHS. For A1, must see both sides of identity connected with at least trailing equal signs.			
(b)	Withhold final $\mathbf{A 1}$ if answer is given as $x=\frac{1}{3}$ Alternative: $2 \mathrm{e}^{3 \theta}-2 \mathrm{e}^{-3 \theta}-3=0 \Rightarrow 2 \mathrm{e}^{6 \theta}-3 \mathrm{e}$ scores M1 for $\mathrm{e}^{k \theta}=p$ (quite generous) A1 fo then $\mathbf{m} \mathbf{1}$ for correct ft from $\mathrm{e}^{k \theta}=p \Rightarrow k \theta=\ln p$	$\ln 2$ 。 ${ }^{3 \theta}-2=$ or $\mathrm{e}^{3 \theta}=$ n p and	$\begin{aligned} & s o\left(\mathrm{e}^{3 \theta}\right. \\ & \text { (and pe } \\ & \text { nal A1 } \mathrm{f} \end{aligned}$	$-2)\left(2 \mathrm{e}^{3 \theta}+1\right)=0$ rhaps $\mathrm{e}^{3 \theta}=-0.5$) or $\theta=\frac{1}{3} \ln 2$ and no other solutions

Q	Solution	Mark	Total	Comment
6(a)(i)	$\begin{aligned} & z^{n}=\cos n \theta+\mathrm{i} \sin n \theta \\ & z^{-n}=\cos (-n \theta)+\mathrm{i} \sin (-n \theta) \\ & =\cos n \theta-\mathrm{i} \sin n \theta \\ & \quad z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta \end{aligned}$	M1 E1 A1	3	$\text { or } \frac{1}{\cos n \theta+\mathrm{i} \sin n \theta} \times \frac{\cos n \theta-\mathrm{i} \sin n \theta}{\cos n \theta-\mathrm{i} \sin n \theta}=\ldots$ shown - not just stated AG
(ii)	$\left(z^{n}+\frac{1}{z^{n}}=\right) 2 \cos n \theta$	B1	1	
(b)(i)	$\left(z-\frac{1}{z}\right)^{2}\left(z+\frac{1}{z}\right)^{2}=z^{4}-2+\frac{1}{z^{4}}$	B1	1	or $z^{4}-2+z^{-4}$
(ii)	$\begin{aligned} (2 \mathrm{i} \sin \theta)^{2}(2 \cos \theta)^{2} & =2 \cos 4 \theta-2 \\ -16 \sin ^{2} \theta \cos ^{2} \theta & =2 \cos 4 \theta-2 \\ 8 \sin ^{2} \theta \cos ^{2} \theta & =1-\cos 4 \theta \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1cso } \end{gathered}$	2	using previous results
(c)	$\begin{aligned} & x=2 \sin \theta \Rightarrow \mathrm{~d} x=2 \cos \theta \mathrm{~d} \theta \\ & \int x^{2} \sqrt{4-x^{2}} \mathrm{~d} x=\int 16 \sin ^{2} \theta \cos ^{2} \theta \mathrm{~d} \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		$x=2 \sin \theta \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=k \cos \theta$
	$=\int(2-2 \cos 4 \theta)(\mathrm{d} \theta)$	m1		correct or FT their (b)(ii) result
	$\begin{array}{r} =2 \theta-\frac{1}{2} \sin 4 \theta \\ =\left[\pi-\frac{1}{2} \sin 2 \pi\right]-\left[\frac{\pi}{3}-\frac{1}{2} \sin \frac{2 \pi}{3}\right] \\ =\frac{2 \pi}{3}+\frac{\sqrt{3}}{4} \end{array}$	B1 \checkmark A1cso	5	FT integrand of form $k(1-\cos 4 \theta)$ $x=1 \Rightarrow \theta=\frac{\pi}{6} ; \quad x=2 \Rightarrow \theta=\frac{\pi}{2}$
	Total		12	
(a)(i) (b)(ii) (c)	May score M1 E0 A1 if $z^{-n}=\cos n \theta-\mathrm{i} \sin$ Condone poor use of brackets for M1 but n For M1, must use $2 \mathrm{i} \sin \theta$ and "their" $2 \cos \theta$ For A1cso, must simplify $\sin ^{-1} 1$ correctly i Allow first $\mathbf{A 1}$ for missing $\mathrm{d} \theta$ or incorrect	θ mere t for A1 θ on LH terms of limits use	quoted but con π. /seen, b	and not proved. one poor use of brackets etc when squaring. t withhold final A1cso.

Q	Solution	Mark	Total	Comment
7 (a) (b)	$\begin{aligned} & \left.\begin{array}{l} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1+x}{1-x}\right)=\frac{1-x+1+x}{(1-x)^{2}}=\frac{2}{(1-x)^{2}} \\ \begin{array}{rl} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{1+u^{2}} \\ & \times \frac{2}{(1-x)^{2}} \\ = & \frac{2}{(1-x)^{2}+(1+x)^{2}}=\frac{1}{1+x^{2}} \\ \text { either } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ \quad \text { or } \int \frac{1}{1+x^{2}} \mathrm{~d} x=\tan ^{-1} x \quad(+c) \end{array} \\ \Rightarrow \tan ^{-1}\left(\frac{1+x}{1-x}\right)=\tan ^{-1} x+C \end{array}\right\} \end{aligned}$ Putting $x=0$ gives $C=\tan ^{-1} 1=\frac{\pi}{4}$ $\Rightarrow \tan ^{-1}\left(\frac{1+x}{1-x}\right)-\tan ^{-1} x=\frac{\pi}{4}$	B1 M1 A1 A1 B1 M1 A1	3	ACF where $u=\frac{1+x}{1-x}$ correct unsimplified AG be convinced AG
	Total		7	
(a) (b)	Alternative $\tan y=\frac{1+x}{1-x}$ $\sec ^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad$ M1 $=\frac{2}{(1-x)^{2}} \quad \mathbf{B 1}$ $\left(1+\left(\frac{1+x}{1-x}\right)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} \quad \mathbf{A 1} \quad$ with final $\mathbf{A 1}$ for proving given result Must see $\frac{\mathrm{d}}{\mathrm{d} x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$ within attempt at part (b) to award B1			

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment

\hline 8(a) \& $$
\begin{aligned}
& y=2(x-1)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(x-1)^{-\frac{1}{2}} \\
& 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{1}{x-1} \\
& (s=) \int_{(2)}^{(9)} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}(\mathrm{~d} x) \quad(=) \\
& \int_{2}^{9} \sqrt{\frac{x}{x-1}} \mathrm{~d} x
\end{aligned}
$$ \& B1
M1

A1 \& 3 \& | ft their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $s=\int_{2}^{9} \sqrt{1+\frac{1}{x-1}} \mathrm{~d} x$ |
| :--- |
| (be convinced) |
| AG (must have limits \& $\mathrm{d} x$ on final line) |

\hline (b)(i) \& $$
\begin{aligned}
& \cosh ^{-1} 3=\ln (3+\sqrt{8}) \\
& (1+\sqrt{2})^{2}=3+2 \sqrt{2}=3+\sqrt{8} \\
& \cosh ^{-1} 3=\ln (1+\sqrt{2})^{2}=2 \ln (1+\sqrt{2})
\end{aligned}
$$ \& M1

A1 \& 2 \& | need to see this line OE |
| :--- |
| AG (be convinced) |

\hline \multirow[t]{6}{*}{(ii)} \& $$
x=\cosh ^{2} \theta \Rightarrow \mathrm{~d} x=2 \cosh \theta \sinh \theta \mathrm{~d} \theta
$$ \& M1 \& \& \[

\frac{\mathrm{d} x}{\mathrm{~d} \theta}=k \cosh \theta \sinh \theta \mathbf{O E}
\]

\hline \& $$
(s=) \int \frac{\cosh \theta}{\sinh \theta} 2 \cosh \theta \sinh \theta \mathrm{~d} \theta
$$ \& A1 \& \& including $\mathrm{d} \theta$ on this or later line

\hline \& $2 \cosh ^{2} \theta=1+\cosh 2 \theta \quad$ OE \& B1 \& \& double angle formula or $\frac{1}{2}\left(\mathrm{e}^{2 \theta}+2+\mathrm{e}^{-2 \theta}\right)$

\hline \& $$
(s=) \theta+\frac{1}{2} \sinh 2 \theta
$$ \& A1 \& \& \[

or\left(\frac{1}{4} \mathrm{e}^{2 \theta}+\theta-\frac{1}{4} \mathrm{e}^{-2 \theta}\right)
\]

\hline \& $$
\cosh ^{-1} 3+\frac{1}{2} \sinh \left(2 \cosh ^{-1} 3\right)
$$ \& m1 \& \& correct use of correct limits

\hline \& \[
$$
\begin{aligned}
& \left.-\cosh ^{-1} \sqrt{2}-\frac{1}{2} \sinh \left(2 \cosh ^{-1} \sqrt{2}\right)\right] \\
& (s=2 \ln (1+\sqrt{2})-\ln (1+\sqrt{2})+6 \sqrt{2}-\sqrt{2} \\
& =5 \sqrt{2}+\ln (1+\sqrt{2})
\end{aligned}
$$

\] \& A1 \& 6 \& | must see this line OE |
| :--- |
| partial AG (be convinced) |

\hline \& Total \& \& 11 \&

\hline \& TOTAL \& \& 75 \&

\hline (b)(i) \& \multicolumn{4}{|l|}{$\mathbf{S C 1}$ for

$$
\cosh (2 \ln (1+\sqrt{2}))=\frac{1}{2}\left((1+\sqrt{2})^{2}+(1+\sqrt{2})^{-2}\right)=\frac{1}{2}(3+2 \sqrt{2}+3-2 \sqrt{2})=3 \Rightarrow \cosh ^{-1} 3=2 \ln (1+\sqrt{2})
$$}

\hline
\end{tabular}

