## AQA

Please write clearly in block capitals.

Centre number


Candidate number


Surname
Forename(s)
Candidate signature $\qquad$

## A-level

## MATHEMATICS

## Unit Further Pure 2

Friday 23 June 2017
Morning
Time allowed: 1 hour 30 minutes

## Materials

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not

| For Examiner's Use |  |
| :---: | :---: |
| Question | Mark |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| TOTAL |  | want to be marked.

## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .


## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.


## Answer all questions.

Answer each question in the space provided for that question.

1 (a) Express $\frac{r+1}{(2 r+1)(2 r+3)}$ in partial fractions.
(b) Use the method of differences to find $\sum_{r=1}^{n} \frac{(-1)^{r+1}(r+1)}{(2 r+1)(2 r+3)}$.

| $\begin{gathered} \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{gathered}$ | Answer space for question 1 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFRRENCE }}$ | Answer space for question 1 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

2 The cubic equation

$$
z^{3}+(6-3 \mathrm{i}) z^{2}+p z+q=0
$$

where $p$ and $q$ are complex numbers, has roots $\alpha, \beta$ and $\gamma$.
(a) Given that $\beta+\gamma=-3+3 \mathrm{i}$, find the value of $\alpha$.
(b) (i) Given that $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}=\mathrm{i}$, find the value of $q$.
(ii) Hence find the value of $p$.
(c) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
[2 marks]

|  | Answer space for question 2 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFRRENCE }}$ | Answer space for question 2 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

3 The curve $C$ has equation $y=1+\cosh x$.
(a) The curve $C$ intersects the curve with the equation $y=2 \sinh x$ at the point $P$. Find the exact value of the $x$-coordinate of $P$.
[5 marks]
(b) The finite region bounded by the curve $C$, the coordinate axes and the line $x=\ln 2$ is rotated through $2 \pi$ radians about the $x$-axis. Show that the volume of the solid generated is $\frac{\pi}{32}(m+n \ln 2)$, where $m$ and $n$ are integers.
[5 marks]

| $\substack{\text { aUESTRON } \\ \text { REFRRENCE }}$ | Answer space for question 3 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFRRENCE }}$ | Answer space for question 3 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

4 (a) Express $9(k+1)^{2}-(k+1)-2$ in the form $9 k^{2}+b k+c$, where $b$ and $c$ are integers.
(b) Prove by induction that, for all integers $n \geqslant 1$,

$$
\sum_{r=1}^{n} r(2 r-1)(3 r-1)=\frac{1}{6} n(n+1)\left(9 n^{2}-n-2\right)
$$

|  | Answer space for question 4 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



5 The complex number $\omega$ is given by $\omega=-\sqrt{3}+3 \mathrm{i}$.
(a) (i) Find the argument of $\omega$, giving your answer in terms of $\pi$.
(ii) Find $|\omega-2 i|$.
(b) The complex number $z$ satisfies both $|z-2 i| \leqslant 2$ and $\frac{\pi}{2} \leqslant \arg z \leqslant \frac{2 \pi}{3}$
(i) Sketch, on the Argand diagram opposite, the locus of $z$.
(ii) Mark $\omega$ on the Argand diagram opposite.
(iii) Find the greatest possible value of $\left|z-\frac{1}{2} \omega\right|$.

| QUESTON <br> REFERT <br> RENCE | Answer space for question 5 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFRRENCE }}$ |
| :--- | :--- | :--- | Answer space for question 5

6 Show that the exact value of $\int_{0}^{\sqrt{3}} x \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right) \mathrm{d} x$ is $p \pi+q$, where $p$ and $q$ are rational numbers.

|  | Answer space for question 6 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFERENCE }}$ | Answer space for question 6 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

7 (a) Given that $\mathrm{f}(\theta)=\ln \left[\frac{\sinh \theta}{1+\cosh \theta}\right]$, where $\theta>0$, show that $\mathrm{f}^{\prime}(\theta)=\frac{1}{\sinh \theta}$.
(b) The curve with the equation $y=\ln x$ from the point where $x=1$ to the point where $x=2 \sqrt{2}$ has length $s$.
(i) Show that $s=\int_{1}^{2 \sqrt{2}} \frac{\sqrt{x^{2}+1}}{x} \mathrm{~d} x$.
(ii) Hence show that $s=a+b \sqrt{2}+\ln \left(1+\frac{\sqrt{2}}{2}\right)$, where $a$ and $b$ are integers.

| $\left\|\begin{array}{c} \text { QUESTION } \\ \text { PEFERENCE } \end{array}\right\|$ | Answer space for question 7 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFERENCE }}$ | Answer space for question 7 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| QUESTTON <br> REFERENCE | Answer space for question 7 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| QUESTRON <br> RERERTNCE | Answer space for question 7 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

8 (a) Use de Moivre's theorem to show that

$$
\frac{\sin 7 \theta}{\sin \theta}=7-56 \sin ^{2} \theta+112 \sin ^{4} \theta-64 \sin ^{6} \theta
$$

(b) (i) Explain why $x=\sin ^{2} \frac{\pi}{7}$ is a root of the equation

$$
64 x^{3}-112 x^{2}+56 x-7=0
$$

and write down the two other roots in trigonometric form.
(ii) Hence show that the value of

$$
\operatorname{cosec}^{2} \frac{\pi}{7}+\operatorname{cosec}^{2} \frac{2 \pi}{7}+\operatorname{cosec}^{2} \frac{3 \pi}{7}
$$

is an integer.

| $\substack{\text { aUESTRO } \\ \text { REFRRENCE }}$ | Answer space for question 8 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\substack{\text { QUESTRON } \\ \text { REFERTNCE }}$ | Answer space for question 8 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


|  | Answer space for question 8 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| - |  |
|  |  |
|  |  |


| $\substack{\text { QUESTION } \\ \text { REFRRENCE }}$ | Answer space for question 8 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

There are no questions printed on this page

DO NOT WRITE/ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

## Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

