AQA

AS

Mathematics

MD01 Decision 1
Final Mark scheme
6360
June 2017

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
Pl	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline \(1 \begin{gathered}\text { (a) } \\ \\ \\ \\ \\ \\ \\ \text { (b) }\end{gathered}\) \& \begin{tabular}{l}
EITHER \\
Path starting \\
\(D-3+E\) or \(4-E+3\) \\
or
\[
C-2+B \text { or } 6-A+1
\]
\[
D-3+E-4
\]
\[
C-2+B-1+A-6
\] \\
Matching A6, B1, C2, D3, E4, F5 OR \\
Path starting
\[
\begin{aligned}
\& 6-F+5 \text { or } D-3+E \\
\& 6-F+5-E+3-D
\end{aligned}
\] \\
followed by
\[
4-E+5-F+6-A+1-B+2-C
\] \\
Matching A6, B1, C2, D3, E4, F5 \\
As \(A\) wants to play \(1, B\) must play 2 \\
\(C\) cannot now play 2 so full team is impossible. \\
OR \\
As \(A\) wants to play \(1, F\) must play 6 \\
So E must play 5 \\
So no-one to play 4 so full team is impossible.
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { B1 } \\
\\
\text { (M1) } \\
\text { (A1) } \\
\text { (A1) } \\
\text { (B1) } \\
\text { E1 } \\
\text { E1dep } \\
\text { (E1) } \\
\text { (E1dep) }
\end{gathered}
\] \& 4

2 \& | Paths should be listed, but allow on diagram provided one path per diagram and start/end clearly labelled |
| :--- |
| Or reverse |
| Or reverse |
| Must be listed |
| Or reverse |
| Or reverse |
| OE |
| Or complete match is impossible |

\hline \& Total \& \& 6 \&

\hline \multicolumn{5}{|l|}{| Notes: |
| :--- |
| In part (a) allow different notations, e.g. C2B1A6 $\begin{gathered}\text { or } \quad \begin{array}{c}C-2+B-1 \\ 1+A-6\end{array}\end{gathered}$ or $\begin{gathered}C-2+B-1+ \\ A-6\end{gathered}$ |
| i.e. any notation which preserves the idea of a continuous path, including different symbols |
| In part (b) the first mark is for a first (simple) consequence and the second is for a full explanation, which must include "full team impossible" (or complete matching impossible) |
| Cannot score $2^{\text {nd }}$ E mark unless first E mark scored |}

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
2 (a)	(A, C, E, G odd vertices)			
	$\begin{aligned} & A C+E G(=10+10)=20 \\ & A E+C G(=12+14)=26 \end{aligned}$	M1		These 3 pairs and added
	$A G+C E(=13+12)=25$	A2,1,0		-1 per error in final totals
	Route $=110+20$	dM1		PI 110 + lowest of their 3 totals
	$=130(\mathrm{~m})$	A1		CSO Must have scored the first 4 marks.
			5	
(b)	3	B1	1	This answer might be in question script but answer space takes precedence.
	Total		6	

Notes:

(a) For any answer other than 130 the m / s applies exactly

For an answer of 130, this scores:

5/5 for NO errors/omissions
4/5 IMPOSSIBLE
3/5 for ONE error/omission
2/5 for TWO or more errors/omissions
eg
candidate has the correct 3 pairs, gives 3 totals, with one incorrect followed by an answer of 130 scores $3 / 5$ candidate has the correct 3 pairs, gives 3 totals, with two incorrect followed by an answer of 130 scores $2 / 5$ candidate has the correct 3 pairs, list the values but does not give any totals but merely an answer of 130 scores 3/5-SC
candidate gives an answer of 130 with no working (or a route shown) scores 2/5 SC

Notes:
(a) The accuracy marks can imply the method marks
dM1 can be earned for a candidate who has scored M1 but A0
Ignore any 'shuttle' interim sorts seen
If a candidate sorts the numbers into descending order then only the \mathbf{M} marks are available

Notes:

(a) Candidates might use different notation eg ‘ 3 -box method’, crossing out required for $2^{\text {nd }} \mathbf{A}$ mark

Notes:

(a) The three parts may be in any order

You must be convinced that the order of the edges given is clear eg list with edges on $2 / 3$ lines
(b) Must be an edge not a vertex

Q	Solution	Mark	Total	Comment
	50 (miles)	B1		
	Any tour is an upper bound OE	E1	2	
	C....C CAEDBC 48 (miles)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		A tour including all 5 vertices (once only) starting from C
	AEDBCA	A1F	4	Or reverse If M0 scored, a correct tour from A of the same length as (b)(i) scores SC1
	B	M1		Any ST, not including A, plus 2 edges from A, indicated in diagram, writing or table, by edges and/or values
(c)	C (7) (7) D (10) E	A1		Correct tree, with correct edges (not values) stated or in labelled diagram (not table)
		A1		Correct edges from A , with correct edges (not values) stated or in labelled diagram (not table)
	$((7+8+10)+(6+9)=) 40 \text { (miles) }$	B1	4	
(d)	'their' 40 (miles) $<L \leq 48$ (condone x, T etc for L)	B2F		Ft only if $\mathrm{LB} \leq \mathrm{UB}$ Ft UB = their lower of (a) and (b)
			2	If 0 scored then SC1 for either part of complete inequality correct (ft) as above Or answer written as 2 correct (ft) but separate inequalities scores SC1 Only one inequality given, scores $0 / 2$
	Total		12	

Notes: (a) OE, allow 'hamiltonian’ or description in words visiting all vertices, returning to start. But not 'it’ (b)(i) A candidate 'working' on the table:

M1 for 5 values circled, one per row/column, with C numbered as 0 or 1
A1 for vertices correctly numbered with C labelled as 5 or 6
(d) condone $40 \leq \mathrm{L} \leq 48$ for B2. Do not condone $L<48$

If a candidate has written two separate inequalities, one of which is incorrect (ft), then this scores $0 / 2$

Notes:

(a) At least 2 values for N, and at least 2 values for each of B, C and D. Condone correct answers given in standard form
(b) Condone 0.286 as printed value
(c) Only accept 0.2892 as printed value

If a candidate has used exact fractions, or working to more than 4 dp , their correct final value of D is 0.0001

Alternative to (c)

Replace ' $D<0.001$?' with ' $D=0$ to 4dp ?' B1

N	A	B	C	D
(6)	(0)	2	0.2857	-0.2857
5	0.2857	2.0233	0.2890	-0.0033
4	0.2890	2.0241	0.2892	-0.0002
3	0.2892	2.0242	0.2892	0.0000
2				
('C') \underline{y}				

Correct trace to $2^{\text {nd }}$ value of $D \quad$ M1
Correct to $N=2$ and stopped, including correct C 'printed' (as before) A1

