

AS

Mathematics

MD01 Decision 1 Final Mark scheme

6360 June 2017

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

	0	Solution	Mark	Total	Comment					
1	<u>(a)</u>	FITHER	IVIAI K	Totai	Paths should be listed, but allow on					
1.	(4)	Path starting			diagram provided one path per diagram					
		D = 3 + E or $4 - E + 3$			and start/end clearly labelled					
		or			and start end crearry faberied					
		C - 2 + B or $6 - A + 1$	M1							
		D - 3 + E - 4	A1		Or reverse					
		C - 2 + B - 1 + A - 6	A1		Or reverse					
		Matching A6, B1, C2, D3, E4, F5	B1		Must be listed					
		OR								
		Path starting								
		6 - F + 5 or $D - 3 + E$	(M1)							
		6 - F + 5 - E + 3 - D	(A1)		Or reverse					
		followed by	. ,							
		4 - E + 5 - F + 6 - A + 1 - B + 2 - C	(A1)		Or reverse					
		Matching A6, B1, C2, D3, E4, F5	(B1)							
				4						
	(b)	As A wants to play 1, B must play 2	E1		OE					
		<i>C</i> cannot now play 2 so full team is impossible.	E1dep		Or complete match is impossible					
		OR								
			(= ()							
		As A wants to play 1, F must play 6	(E1)							
		So E must play 5								
		So no-one to play 4 so full team is	(E1dep)							
		impossible.								
				2						
		Total		6						
Not	es:									
In pa	In part (a) allow different notations, e.g. C2B1A6 or $C-2+B-1$ or $C-2+B-1+$									
1+A-6 $A-6$										
	i.e. any notation which preserves the idea of a continuous path, including different symbols									
In pa	art (b)	the first mark is for a first (simple) conse	quence ai	nd the se	cond is for a full explanation, which					
mus	t inclu	de "full team impossible" (or complete m	atching in	npossibl	e)					
Can	Cannot score 2 nd E mark unless first E mark scored									

Q	Solution	Mark	Total	Comment						
2 (a)	(A, C, E, G odd vertices)									
	AC + EG (= 10 + 10) = 20	M1		These 3 pairs and added						
	AE + CG (= 12 + 14) = 26									
	AG + CE(= 13 + 12) = 25	1210		-1 per error in final totals						
		AZ, 1,0								
	Route = $110 + 20$	dM1		PI 110 + lowest of their 3 totals						
	= 130 (m)	A1		CSO Must have scored the first 4						
				marks.						
			5							
(b)	3	B1		This answer might be in question script						
(5)	5		1	but answer space takes precedence.						
			•							
	Total		6							
Notes:										
(a) Fo	r any answer other than 130 the m/s appli	es exactly	v							
For an ans	swer of 130, this scores:)							
5/5 for NO	errors/omissions									
4/5 IMPC	SSIBLE									
3/5 for ON	E error/omission									
2/5 for TW	2/5 for TWO or more errors/omissions									
eg										
candidate h	has the correct 3 pairs, gives 3 totals, with	one inco	rrect foll	lowed by an answer of 130 scores 3/5						
candidate h	as the correct 3 pairs, gives 3 totals, with	two inco	rrect fol	lowed by an answer of 130 scores 2/5						
candidate h	has the correct 3 pairs, list the values but	does not	give anv	totals but merely an answer of 130						
scores 3/5	SC		Brie unij	totals out motory an answer of 150						
	scores $3/5 - SU$									

candidate gives an answer of 130 with no working (or a route shown) scores 2/5 SC

	Q					Solu	ution)			Mark	Total	Comment
3	(a)	18	3	45	17	1	26	43	22	16			
		10				1				16			
		10	2			1	26			10			
			5	45			20	43					
				10	17			10	22		M1		SCA: use of these 4 sub lists (which may be written down already sorted)
		1	3	43	17	16	26	45	22	18	A1		This line must be seen
		1	3	43	17	16	26	45	22	18	dM1		Correct use of 2 sub lists (which may
		1	3	16	17	18	22	43	26	45	A1		Must see 'merged' list
		1	3	16	17	18	22	26	43	45	A1	5	All correct
	(b)	6									B1	1	This answer might be in question but answer space takes precedence.
										Total		6	
Not	Notes: (a) The accuracy marks can imply the method marks dM1 can be earned for a candidate who has scored M1 but A0 Ignore any 'shuttle' interim sorts seen If a candidate sorts the numbers into descending order then only the M marks are available												

	Q	Solution	Mark	Total	Comment					
4	(a)(i)	17 B 38 E	M 1		SCA 2 values at <i>D</i> , only 1 value at <i>B</i> , <i>C</i>					
		A D F H	A1 A1		Correct values at <i>E</i> , <i>F</i> , <i>G</i> All correct including crossing through, boxing. Condone missing/unboxed 0 at <i>A</i> .					
		C 12 52 51 G	B1		67 final value at <i>H</i>					
		B 51 B 51 C 27 B 69 68 67 C 56 55 C 55			If working in reverse					
	(ii)	ACDGH	B1	5	Or reverse					
	(b)	ABDGH	B1		Or reverse					
		68 (km)	B1	2						
		Total		7						
No	otes: (a) Candidates might use different notation eg '3-box method', crossing out required for 2 nd A mark									

Q	Solution	Mark	Total	Comment
5 (a)	26 (cm)	B1		
(b)	Minimum spanning tree = 25 (3, 4, 4, 5, 9 or 3, 4, 5, 5, 8) Seen on a diagram not just as a list	B1	1	Edges throughout need not be straight.
	A connected graph with 6 vertices and 9 edges, labelled with the 9 values given	M1		
	Graph is simple	A1	3	
(c)	e.g.	M1		Simple, connected graph with 6 vertices and 9 edges
		A1	2	Vertices of order 4, 4, 4, 2, 2, 2
	Total		6	
Notes:				

Q	Solution	Mark	Total	Comment
6 (a)(i)	YB	M1		SCA first 2 edges correct
	DN			Allow BY for YB etc
	KS			
	SF	۸1		Compating for as SE
	NB	AI		Confect as far as SF
	DT			
	ST	B1		7 edges not values PI by spanning tree
		A1		Completely correct
				completely contect
(ii)	117 (miles)	B1		This answer might be in question script
				but answer space takes precedence.
(iii)				
()	K F			
	N Y			
	$_{\mathrm{T}}$			
				All correct including labelling.
				Diagram must be shown separately not
		B1		just highlighted over diagram in
				question on script.
			6	
(b)(i)	BY	D 4		A coort VD
		B1		Accept YB
(ii)	SF	B1		Accept FS
				This answer might be in question script
			•	but answer space takes precedence.
	Total		2	
Notes:	Total		0	
(a) The	e three parts may be in any order			
You	u must be convinced that the order of the	edges giv	ven is cle	ear eg list with edges on $2/3$ lines

(**b**) Must be an edge not a vertex

Q	Solution	Mark	Total	Comment							
7 (a)	50 (miles)	B1									
	Any tour is an upper bound OE	E1	2								
(b)(i)	CC CAEDBC 48 (miles)	M1 A1 B1		A tour including all 5 vertices (once only) starting from <i>C</i>							
(ii)	AEDBCA	A1F	4	Or reverse If M0 scored, a correct tour from <i>A</i> of the same length as (b)(i) scores SC1							
(c)	B	M1		Any ST, not including <i>A</i> , plus 2 edges from <i>A</i> , indicated in diagram, writing or table, by edges and/or values							
	$C = (7) \qquad D \qquad (10) \qquad E \qquad + \qquad C \qquad F$	A1		Correct tree, with correct edges (not values) stated or in labelled diagram (not table)							
	(6) (9) (6) (9)	A1		Correct edges from A, with correct edges (not values) stated or in labelled diagram (not table)							
	((7 + 8 + 10) + (6 + 9) =) 40 (miles)	B1	4								
(d)	<i>'their'</i> 40 (miles) $< L \le 48$	B2F		Ft only if $LB \le UB$ Ft UB = their lower of (a) and (b)							
			2	If 0 scored then SC1 for either part of complete inequality correct (ft) as above Or							
				answer written as 2 correct (ft) but separate inequalities scores SC1 Only one inequality given, scores 0/2							
	Total		12								
Notes: (a)	OE, allow 'hamiltonian' or description in	n words v	isiting al	ll vertices, returning to start. But not 'it'							
(b)	(I) A candidate 'working' on the table:	with C	numhara	d as 0 or 1							
	for vertices correctly numbered with C la	i, with C	5 or 6	u as 0 of 1							
(d)	condone $40 \le L \le 48$ for B2 . Do not co	ondone L	< 48								
If a	If a candidate has written two separate inequalities, one of which is incorrect (ft), then this scores $0/2$										

0			Solutio	n		Mark	Total	Comment
8 (a)	N	A		C	D	mark	Total	
c (u)	(6)	(1)	3	0.4286	0.5714	M1		Trace as far as $N = 4$, condone exact fractions or working to other than 4
	5	0.4286	2.0787	0.2970	0.1316			dp.
	4	0.2970	2.0262	0.2895	0.0075	A1		Correct to $A = 0.2970$, values as shown in the table
	3	0.2895	2.0243	0.2892	0.0003			
	2					A1		as shown in the table $V = 2$ and stopped, values
(b)	('C')	<u>0.2892</u>				B1	4	Correct <i>C</i> 'printed' ie must appear in addition to final value in <i>C</i> –column
	N	A	В	С	D			For parts (b) and (c) condone exact fractions or working to at least 3 dp
	(6)	(0)	2	0.2857	-0.2857	B1		Correct trace as far as $N = 5$ and
	5							stopping
	(C)	0.2857	AWRT	(or 2/7)		B1	2	Correct C 'printed' (as above)
(c)(i)	Replac	e D < 0.00	01? with -0.0)01 <d<0.0< th=""><th>01? OE</th><th>B1</th><th>L</th><th>eg $D = A - C , D < 0.001$</th></d<0.0<>	01? OE	B1	L	eg $D = A - C , D < 0.001$
	N	Α	В	С	D			
(11)	(6)	(0)	2	0.2857	(-)0.2857			
	5	0.2857	2.0233	0.2890	(-)0.0033	M1		Correct trace to 2^{nd} value of <i>D</i> with
	4	0.2890	2.0241	0.2892	(-)0.0002			signs consistent with their 'change step'
	3							step
	(C) <u>(</u>).2892						
						A1	3	Correct to $N = 3$ and stopped, including correct <i>C</i> 'printed' (as above)
					Total		9	
L	I						-	

Notes:

- (a) At least 2 values for *N*, and at least 2 values for each of *B*, *C* and *D*. Condone correct answers given in standard form
- (b) Condone 0.286 as printed value
- (c) Only accept 0.2892 as printed value
 If a candidate has used exact fractions, or working to more than 4dp, their correct final value of D is 0.0001

Alternative to (c)

Replace 'D < 0.001?' with 'D = 0 to 4dp ?' **B1**

(Q	Solution	Mark	Total	Comment						
9	(a)	$x + y + z \ge 225 \qquad \qquad x + y + z \le 375$			OE						
		$y \ge \frac{1}{2}x \qquad \qquad y \le 3x$	B2		OE						
				2							
	(b)	$z = (x + y + z) \div 5 \qquad \text{PI}$	M1		OE eg $x + y = 0.8(x + y + z)$						
		$\Rightarrow 4z = x + y$ PI	A1		OE simplified to 3 terms						
		× 11 × 225									
		$(x + y + (x + y)/4 \ge 225)$	M1		Correctly substitute for their z (must						
		(≤3/5)			be in terms of x and y) in at least one of their 1^{st} true in equalities in part (a)						
		ag = 5r + 5y > 000			of their 1 two inequalities in part (a)						
		(< 1500)			Must see a middle step						
		(21500)									
		$x + y \ge 180 \qquad \qquad x + y \le 300$	Δ1		CSO to produce given answers						
		AG			esto to produce given unswers						
				4							
					All lines must be ruled, correct to						
	(C)	× /			within ¹ / ₂ square horizontally AND						
					vertically						
			B2		All 4 lines correct						
			02		x + y = 180 $x + y = 300$,						
					through intercepts 180 & 300						
		X FR			$y = \frac{1}{2}x$, $y = 3x$ through origin &						
					(200, 100) and (100, 300) respectively						
		x			B1 for 2 correct lines						
			B1	•	All correct and FR labelled						
				3							
(d)(I)	(C) = 10x + 20y + 40z PI	M1								
		$= 10x + 20y + 40(x + y) \div 4$									
		= 20x + 30y	A1								
		OL with gradient $-2/3$ (correct by eye)	B1F		Ft their expression for C						
	(ii)	(120, 60) stated (and identified as min)	B1F		See below						
		$(Cost =) \pounds 4200$	B1		Including units						
		120 Economy, 60 Standard, 45 Deluxe	B1								
				6							
		-		4 5							
Nata	\mathbf{r}	Total		15							
	=5 (a) (h) For	DI for any two inequalities correct 1 st method mark, allow 20/100 but not 2	∩% If a	candida	te has used inequality for 7 then may						
	(b) FOLT method mark, and w $20/100$ but not 20% . If a candidate has used inequality for z, then max mark is M0A0M1A0										

Candidate only finding 80% of 225 (or 20%) scores 0

(d)(ii) For the **B1F**, using their OL on their FR(must be a quadrilateral), and stating the co-ordinates of the point that gives 'their' correct minimum. Correct by eye from graph.

If a candidate lists their extreme points, then the **B1F** is earned by correctly identifying their 'minimum' Must see 'economy', 'standard' and 'deluxe' for final **B** mark